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I. INTROIXICTION 

A, Nature and Purpose of the Problem 

The Biodern theories of molecular electronic structure 

are necessarily based on the principles of wave mechanics. 

Assuming that these principles are correct, the limita­

tions which perpetually appear in problems of chemical 

valency may ali^ays be traced to formidable mathematical 

complications. The solution of these difficulties gener­

ally leads to an increased accuracy of description, but 

nearly always to a loss of conciseness and simplicity. 

The latter, on the other hand, constitutes one of the 

principal, although not always well manifested, designs 

of theoretical chemistry, Nevertheless, simple explana­

tion, if it is to Mve the greatest degree of universality, 

must not only be supported by the primary measure of exper­

imental verification, but also be capable of correlation 

with more rigorous interpretations. Oftentimes, this cor­

relation becomes a valuable aid in devising more prolific 

simplifications, 

The molecular orbital (^) approximation is one of the 

important methods which is utilized for dealing ti?ith the 

problems of molecular quantum mechanics. It is simple in 
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the respect that It represents the natural extension of 

well-known atomic concepts to the molecular domain. In 

practice, the method has found a large degree of success 

on qualitative and semi-empirical grounds. Recently, 

C, C, J, Rootliaan (1) has outlined a rigorous, yet 

straightforward, mathematical formulation of self-

consistent field (SCF) MO theory. Into this, he has 

incorporated the linear-combination-of-atomic-orbitals 

(LCAO) approximation in a very generalized fashion. The 

SCF method secures the best possible wave function within 

the scope of the W treatment. Most applications have been 

confined, however, to relatively specific areas where cer­

tain conditions of geometrical syimaetry permit tractable 

computations. More general cases are certainly in need of 

consideration and solution. 

It has been the first objective of this research to 

secure the best SCF MO wave function for the water molecule 

in the LCAO approximation. This molecule, although being 

the simplest of.all common polyatomics, affords an excep­

tional insight into the physical laws of electronic struc­

ture, Thus, in the light of the foregoing comments, the 

secondary ends of the work have been to provide the 

following: (i) a means for a better understanding of 

the water molecule itself; (ii) a means to test the valid­

ity of the rigorous LCAO MO approach; and (iii) a means of 
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examinlng the limitations of simplified and related ap­

proaches to the solution of electronic structure. 

B, Organization of the Thesis 

The thesis is divided into four main chapters follow­

ing this introduction. Chapter II is devoted to an exposi­

tion of the previous theoretical treatments of the water 

molecule and previous SCF MO treatments of other mole­

cules, This same chapter is prefaced by a brief descrip­

tion of the approximations utilized in problems of elec­

tronic structtire. 

Chapter III is concerned directly with the SCF MO 

treatment of water, u?he first part describes the general 

mathematical application of the theory to this special 

case, and the second part gives the evaluation of inte­

grals involved in the energy calculation. The estimation 

of tliree-center integrals constitutes the only approxima­

tion not inherent in the LCAO SCF MO theory x^hich has been 

introduced into this treatment. Finally, the third part 

of this chapter relates and interprets the results of the 

calculations, 

Chapter IV lists the major conclusions of the work, 

and Chapter V gives a brief summary. 
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II. RliWISW OP THE LITERATURE 

A. General Considerations 

1, The Initial approximation 

A molecule is here defined as any system of atomic 

nuclei and electrons. The problem of determining the 

electronic properties of such a system is the solution 

of Schrodinger^s equation: 

» (2 .1)^ '  

where H is the total electronic hamiltonian,"''^^ expressed 

in atomic units,^ for the system of N electrons in the 

field of M nuclei held fixed in space; viz., 

K o H 'i N N iS 
H «- i: i: % + r z: 1 (2.a) 

p- m rPia ^ r^V 

"'Equations will be designated In this manner. The first 
number refers to the chapter, the second to the sequen­
tial position of the equation within that cliapter, 

"'Magnetic effects due to the interaction of spins and 
orbital motions of the electrons will be neglected 
throufjhout, 

^One atomic unit of length (a.u.) equals one Bohr radius, 
0,5292 angstrom units {A)j one atomic unit of energy 
(a.u,) equals twice the ground state energ;/ of the hydro­
gen atom, 2 X 13.602 electron volts (e,v,), 

^•'^'Subscripts will generally be used to identify functions, 
superscripts to denote electrons and nuclei. 
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The function may be regarded as the electronic eigen-

function of the operator "H corresponding to the state with 

the eigenvalue £|,« Concern will be had only for this 

electronic part of the molecular wave function, the trans-

lational, vibrational and rotational parts being separated 

off (2, pp. 80-82, 190-192). 

The starting point of the coraraon approximation methods 

is the series expansion of in terms of more simple 

electronic state functions -0. 
S 

 ̂  ̂ E S (2.3) 

The result of such a suinraation will equal only if 

the series is carried over a ccsnplote set of functions. 

If the initial terms are chosen wisely, the convergence 

is expected to be rapid. Minimisation of the energy. 

Ef = fr^HT^dv , (2,)].) 

with respect to the a^.- leads to the secular equation: 

'"'It should be noted here that approximations of are 
not limited to those leading to this type of expansion. 
By using ccsaplicated functions, with a sufficient number 
of variable parameters, very successful results have been 
secured for some simple molecules (cf. 3)« Nearly perfect 
wave functions have thus been obtained without resorting 
to extremely long series. Such approximations are adapt­
able to the general case only with extreme complications. 
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iHggt - Sgg,.E|= 0 , (2.^) 

In which. HggI ® 'dv and Sggi ® ^jflgiTgjdv, This 

Is solved for the roots, E, of which the lowest, Ef, deter­

mines an upper limit to 6|«, The coefficients a^^g corre­

sponding to the variation function (2,3) are then deter­

mined by substituting into the simultaneous equations 

from which (2,5) was derived. 

The Pauli Exclusion Principle restricts the electronic 

states which actually occur to those corresponding to the 

eigenfunctions which are antisyitiraetric with respect to 

an interchange of any two electrons (2, p, 130). There­

fore, the functions F^, as well as the £1 g's, must also 

have this property. 

There are several properties of the eigenfunction 

which can be utilized in simplifying the choice of Ag's 

and facilitating the solution of (2,5). If a molecule has 

symmetry, the wave functions can be classified according to 

the irreducible representations of the symiaetry group of 

the molecule to which they belong (i^). Also, since the 

operators and Sg commute with H for all molecules, the 

eigenfunctions "5^f may be chosen so that they are simul­

taneously eigenfunctions of all of these operators (2, p. 233). 

Then, if the fvinetions ilg are chosen so as to belong to 

symmetry species of the molecule, and to have definite 



www.manaraa.com

-7-

total spin and component spin angular raomenttiras, the ex­

pansion (2,3) is considerably simplified. The a^g will 

equal zero unless the Ag is identical with in these 

properties. 

In the approximation methods under consideration, the 

basic electronic configuration wave functions which are 

utilized are always ©igenfunctions of S^. On the other 

hand, they are not necessarily eigenfunctions of s2 nor 

laembers of irreducible representations of the molecule. 

The which are taken to possess these properties, 

may be constructed from these basic functions as suitable 

finite linear combinations; 

-H.- a b̂gĥ h • (2,6) 
h 

Equations (2*3) and (2,6) now form the bases of the 

valence bond (VB) theory as well as the complete ̂  theory 

with configuration interaction (CI)."'" In the next two 

sections, a brief description of these two approximations 

iirill be undertaken. 

'"'Recently, Moffitt (5) iias suggested a new approach to 
problems of electronic structure, based upon these same 
two equations. 
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2. The ITO approximation''''" 

This method, as was pointed out in the introduction, 

is an extension of the quantum mechanical treatment of 

atoms to molecules. This leads naturally to the identi­

fication of the functions as antisjnnmetrized products 

(^'s) of one-electron molecular spinorbitals (MSO*s)« If 

the latter are denoted by the functions 'f'jj, an MSO product 

wave function corresponding to a given N electron configu­

ration may be written as follows! 

A h -  ( 2 . 7 )  

This function is then antisyiametrized and normalized to 

give 

£(-l)PpAii , (2.8) 

where is the normalizing factor and /I is the antisyranie-

trization operator as indicated. is unity if the MSO's 

are orthonorraal. 

It is often necessary to take linear combinations of 

the $ as indicated in equation {2,6). Then equation (2.3) 

expresses the basic CI approximation. 

'"'This description is largely drawn from (1) and (6). 
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One may now define the terra electron shell, as used 

in MO theory, as 

, , . a set of MSG'S in which (i) every MO 
occurs twice, namely," once with either spin, 
and (ii) if there is degeneracy on account of 
molecular symmetry, the MO's in the shell form 
a complete degenerate se¥~(l, p. 71). 

Most molecules have such a closed shell structure in the 

ground state, that is, in the lowest energy state in which 

the electrons have been placed in the lowest energy MSO*s» 

Such a closed shell structure may be depicted as a single 

AP.The true electronic state which corresponds to 

this closed shell structure should be reasonably approxi­

mated by this single AP: 

'5'f - f . (2.9) 

This should be moderately true only for a closed shell 

molecular ground state, since all other states of the 

same sj^mmetry would be expected to be far removed in ener­

gy. For excited closed shell structures, it is very likely 

that CI would be of importance, 

Assming no spin-orbit interaction, which is, indeed, 

a very good approximation for light atoms, the MSO*s may be 

separated into two factors. These are separately dependent 

upon apace and spin coordinates, and written as follows: 

'"'A closed shell AP, $ |j, is always totally symmetrical and 
singlet (zero t^al spin angular momentum). 
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f = (2.10) 

where oC denotes spin of pltxs one-lialf and ji spin of minus 

one-half, Tt-^o electrons vrith opposite spins may thus 

occupy one MO, 

Equations (2,7) to (2,10) thus form the bases of the 

ordinary M approximation. The specific formulation for 

the ground state of the xmter molecule is straightforward. 

The ten molecular electrons are placed in the five lowest 

energy ]^'s» so that equation (2,7) may be written: 

A o -

(2,11) 

The problem is then to determine the formulations of the 

various ̂ 's in order to secure closest correspondence of 

§ o '^o» the true electronic ground state eigen-

function, 

3, The 7B approximation''''' 

This method is an extension of the approximation first 

'"'This description is partially draxm from (2, pp. 232-2l|.0), 
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used by Hoi tier and London (7) for the two electron hjrdro-

gen molecule problem. The fundamental approach is one 

which Is well suited to chemical description, inasmuch as 

the functions utilized are qiiantian mechanical analogues of 

common structural formulae. On the other hand, the method 

suffers in that it is difficult to apply with rigor, and 

has thus been restricted more than theory to qualita­

tive and semi-empirical success. 

The elementary functions used in constructing the 

are the atomic orbitals (^*s) of the separated 

atoms which constitute the given molecule. The first step 

is to distribute the electrons among these ̂ 's in a pre­

cise manner, viz., one electron in each bonding ̂  and two 

in each ̂  corresponding to a lone pair. The spins are 

assigned so tliat the total is equal to zero. The product 

of with electrons thus assigned is then antisymme-

trized so as to confom to the Pauli Exclusion Principle, 

These are the functions of V3 theory given in equa­

tion (2,6), For a given set of M's, there will, of 

course, be several ways of distributing the electrons, 

and, therefore, several §^'3. 

The formulation of the may be carried out In 
a 

two steps, the first of which results in sets of functions 

^Identical symbols for analogous functions in the VB and 
MO methods will be utilized. This considerably r^uces 

number of different s]/mb0ls required. It will always 
be evident to which approximation they refer. 
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having the same eigenvalue of S^, the second giving func­

tions of correct sjrcBietry. One takes linear combinations 

of the in such a manner that a change of sign results 

if two electrons forming a bond have their spin functions 

interchanged. This corresponds to the fact that the spin 

function associated with a stable bond is antisymmetric in 

the electrons. The final /Ig'S are determined by symmetry 

requirements. This method of constructing the will 

be clarified in its application to the i-irater molecule 

(vide infra). 

The electronic state of a molecule is represented as 

a superposition of the "structure" wave functions ilg ac­

cording to the formulation of equation (2,3). This has 

special significance from the chemical viewpoint, inasmtich 

as it represents the state of a molecule not by any conven­

tional formiila, but by a "resonance" between several. The 

structures which are relevant to a singlet totally symmet­

rical ground state are only those which have Just these 

properties. 

B, Theoretical Treatments of Water 

The classical electrostatic models 

Before detailed consideration of the quantum mechani­

cal treatments of H2O, brief mention should be made of some 
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of the earlier theories in order to make this survey 

complete. 

P. Debye (8) based his work on the conception of polar 

molecules as being S7/-3terns having a distribution of elec­

trical charge which could be characterised by a permanent 

electric moment. He considered HgO as being made up of two 

protons and an oxygen ion. Utilizing formulae based upon 

atomic and molecular polarizabilities, Debye was able to 

consider the various possible geometrical configurations 

and determine which would be most stable. He was able to 

reduce the possibilities to txTO, each with an 0-H distance 

of about one angstrcsn, one with an H-O-H bond angle of 

614. degrees, the other, 110 degrees. The former gave a 

dipole moment of 1.31+ D, the latter, )4..32 D. On this 

basis, he supposed the acute model to be the more probable, 

Debye cites some previous Investigations which are of 

historical interest. In 1916, ¥. Kossel (9) pictured the 

component atoms of HgO as being hard spherical shells, thus 

leading to the conclusion of a linear model for the mole­

cule. One year before he made his first formulation of 

the new quantum mechanics (10), Heisenberg considered 

H2O (11) by a method in which the repulsive forces were 

Introduced aa power functions of the distance. In the 

same year, P, Hund (12,13) carried out a rather similar 

treatment. 
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2, The early quantTom mechanical treatraenta 

(a) VB treatBients. Before specific consideration of 

the Initial ̂  calculations on HgO, it is wise to describe 

briefly a socaewhat general application of the method to 

the molecule. In this way, the approxiraations which will 

be described may be more easily related and interpreted. 

The comion structural fomulae of H2O may be depicted 

and labeled as follows: 

H—0-—H 0 0—H [1—0" H+ 0" H+ (2,12) 
H—H C c" 

a b c d 

Equation (2,3) may thus be written: 

'̂ o ~ ô ® •̂oa-̂ a ''' ôb"̂ b ̂  ôc"̂ c ôd'̂ d •(̂ •̂ 3) 

These are the fimctions which are to be constructed, Tliey 

represent the most probable Important VB structiires wliich 

contribute to the ground state wave function. 

The hydrogen AO's to be utilized in the TO molecu­

lar functions will be designated ̂  and h^. The oxygen 

functions tflll be designated Is, ^2 2p2c, the 

x-axis being perpendicular to the moleculai" plane. In the 

covalent structure J^2 bonding AO's. 
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Tlie general designations allox̂ - for consideration of hybrid­

ized orbital representations of the form 

I'i ' ^ "Ip'^p ' '2.11^) 

Where the Xp are oxygen ̂ 's, say 2p2 and 2py»"̂ '' The 

functions will not be distinguished between the various 

VB structures, although such consideration would need to be 

made in acttial application. That is, different hybrids 

wcfuld be involved in the different rig -functions (17). 

The first step is to construct all ̂  product func­

tions which are related to the above J^g's. The elec­

tronic spins in the l£, and 2px orbitals are paired. 

Consider T as the product of ̂ 's involving ĥ , ĥ , 

and ^^id 0 as the product of the remaining lone pairs. 

The function will be considered to be directed toward 

h', ̂ 2 toward Then, 

Ah -

"In a more rigorous formulation, it would be found that 
this hybridization is equivalent to considering the inter­
action between several molecular states derived from atom­
ic states differing in configuration but not in valence 
(lli.,l5)» In addition, there is the possibility of reso­
nance involving excited state structures related to atomic 
configurations which differ in valence, an example being 
the contribution of {2s)2(2p)2 to the tetrahedral valence 
state of carbon (16). 
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(2.15) 

= li'oc) 

I2 = h'oc) 

T3 = ht,3)Vi<̂ )%f3)3hV)̂  

X|̂  = 

X^ « h»c^) 

= h»/3)V;̂ /S)2/2or)3hV)̂  

Xg » h* 

= h"ĉ )V2̂ )%̂ )Vi(a)̂  

Tw = h7' 

T]1 = ;<i«)Vi(3)%°f)V2(3)'» 

The ̂  configuration functions corresponding to each 

are then written in the same manner as the i^ formula­

tion given in equation (2,8), namely, 

i h ' / - A h -  ( 2 - 1 6 )  

It is to be noted that the are not normalized, nor 

are they necessarily orthogonal to each other. 

The n g functions may now be written as in equation 

(2,6). The coefficients bgj^^ must be chosen so as to corre­

spond to the various structures given in (2,12), that is, 

chosen so that each Hg is antisymmetric to Interchange of 



www.manaraa.com

-17-

sp5.ns associated with a stable bond, as well as having 

appropriate syiiimetry. 

The function JI a involve § inclusive, 

as there are no possible combinations of the remaining 

functions which are antisymmetric to spin interchange of 

the bonding electrons (the spins of and h*, as x^ell as 

of ̂ 2 railst be opposite). On interchanging spins of 

h' and and interchange, and $2 inter­

change* On interchanging spins of and f^2» ^1 ^2* 

and $2 $1^ interchange. Therefore, 

''al " -"aa ' "V • 

^al • '\z ''as • -•'aU •' 
(2.17) 

These reduce to 

''al ' -\z ' -\3 ' ''aî  • '2.18) 

and 

-  § 2  -  ̂ 3  +  ^ 2 . 1 9 )  

Similar reasoning may be applied to the construction of the 

remaining ilg's. The structures n ct and SI QI! do not 

'""These relations are obtained b7f Inspecting equations (2.15). 

"'•"'̂ The factor, b̂ ]_, equal to has been separated to sim­
plify the normalizing factor. equals unity only if the 
$ functions are assuraed to bo orthonormal. 
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belong to the symxaetry group of 1120. Their smn and differ­

ence do, however. Only the former is totally symmetric, 

capable of entering into resonance in the ground state. 

The resulting functions may be thus listed:''''' 

-O-a ' - ^2 - ^3 + 

lib = 2-^(42 t $3 - §5 - $6) 

ilo « - fa + ^9 - ^lo) 

•̂ d "d ̂  11 • 

(2.20) 

The only purely theoretical TO calculations which have 

been carried out on H2O are those by Coolidge (I8), pub­

lished in 1932» It should be empliasized that this was an 

approximate theoretical calculation; that is, it adhered 

to pure TO theory but utilized approximate ̂ 's. All over­

lap integrals and multiple exchange terms were explicitly 

included, and all energy terras which arose from thcee-

center interactions were accounted for. The computations 

were carried out for three values of the H-O-H bond angle. 

'""The electron assignment in the Aî 's as given in (2.13') 
defines the first term of the ̂  corresponding to each 
§ h* If a new $ were chosen which differed from the 
present choice, $ by an odd ntamber of electron permu­
tations, then would equal minus i Therefore, the 
signs in equations (2,20) are naturally conditioned by 
the initial choice of Aj^'s. 
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Initlally, the only functions considered were H and 11^, 

the final function being formulated as follows; 

ô ~ •̂oa"̂  a  ̂®'Ob'̂ b •' (2,21) 

The results of the treatment are given in Table 1, 

Table 1, Results of the ̂  calculation on 

H-O-H Total Total Calculated 
bond angle a^a. i^ob molecular atomic dissociation 

energy energy energy 

77® 22' 1.106 0.076 -l8.i|.976 -18.3867 0.1109 

90° 0' 1.082 0.083 -18.^133 -I8.3867 0.1266 

97® 11* I.07I4 0.087 -18.̂ 150 -18.3867 0.1283 

a. Adapted from results of Coolidge (18), 

b. All values are given in atomic units. 

They may be considered to be very successful indeed, inas­

much as they predict a bond angle greater than 97 degrees, 

11 minutes. Insignificant mention of this was made by 

Coolidge, since at that tliae the bond angle in H2O was not 

known definitely. In 1933» Mecke and co-workers (19,20,21) 

'"The symbols used here are not tiose of Coolidge, 



www.manaraa.com

-20-

determined that the angle must lie between 102 and 111 

degrees, 

The observed dissociation energy for HgO is 9.I4.9 elec­

tron volts (22, p, i{.8l), or about 0.35 atomic units. In 

order to secure improvement of the calculated results, 

Coolidge carried out an additional computation which in­

cluded structure -H-q. This led to a definite increase in 

the dissociation energy. The resulting normalized wave 

function for the larger bond angle was found to be 

Tq « 0.7828 + 0.0073 -Tib + 0.31̂ 03-HQ , (2.22) 

and the calculated binding energy was 5*7 electron volts, 

giving a depression of 2.2 electron volts by including 

XIc. TIae variation with respect to bond angle was little 

effected by this resonance. 

The other early VB treatments were of a much more 

simplified and qualitative character. They were of great 

value, however, in establishing the quantum theory of di­

rected valence, Pauling (23) first discussed the formation 

of H2O in this sense, indicating that interaction between 

the two hydrogen atoms would lead to an increase in the 

bond angle. The latter effect would be enhanced because 

of the resultant positive charge on the hydrogen atoms at­

tributed to the partial ionic character of the 0-H bonds (2l|.). 
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Heath and Linnett (2^) have pointed out that Pauling's 

simple model is not able to account for the observed bond 

angle in H2O, Using Pauling's value for the bond moment of 

the 0-H link 3.n H2O, and the observed force constant for 

the H-O-H bond angle deformation, they are able to show 

that electrostatic repulsion between the hydrogens would 

open the bond angle to only about 100 degrees. 

On the other hand, it should be noted that in addition 

to this resultant coulombic repulsion, there is an exchange 

repulsion between hydrogens which shoi^ld be accoiinted for 

in the simple covalent VB model. 

Slater (26,27) made some very simplified calculations 

on HgO based upon semi-empirical VB theory. The assumption 

is first made that the structure is sufficient to de­

scribe the molecule; that is, polar structures are not 

explicitly included. Secondly, the energy of the structure 

is determined under the assumption that all are 

strictly orthogonal. This certainly appears to be unjusti­

fiable Inasmuch as bonds are considered to be formed be­

tween ;;^'s which overlap as much as is energetically 

possible. However, the final formulation seems physically 

plausible, especially if one uses empirical values for the 

theoretical terms. For a bond angle of 90 degrees, Slater 

obtained a dissociation energy of 9.3 volts for HgO, For 

a bond angle of I80 degrees, the result was 7»0 volts. It 
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was shown that the 2£ valences by themselves have a defi­

nitely directional effect, but upon this is superposed an 

ordinary repulsion of the non-bonded atoms. 

Van Vleck and Cross (28) obtained quite successful 

results for HgO using serai-eiapirical TO theory. This treat­

ment was very similar but more elegant than Slater's. Dif­

ferent and better empirical values were used for the neces­

sary integrals. The energy equations uere constructed 

primarily for the purpose of determining vibrational fre­

quencies. They calculated a dissociation energy of 

8,9 volts, but pointed out that any electron pairing 

theory of valence will predict a value approximately 

equal to twice the dissociation energy of OH. The com­

puted frequencies are in remarkable agreement with theory: 

3^20j 3560 and 1660 wave numbers as compared to the ob­

served 37$^*Q, 36^1.7 and 1^9^.0 wave numbers (29, p. 28l). 

In these calculations, the exchange repulsion between the 

hydrogen atoms ims taken into account. This was accom­

plished by assuming that the resonance energy constitutes 

0.88 of the total binding energy of a hydrogen molecule, 

and that a Morse ftinction can be used to give the variation 

of this energy with distance. This calculation led to a 

minimum energy for HgO at a bond angle of 100 degrees. 

The early quantum mechanical treatments of H2O, as 

well as those of other molecules, were very successful in 



www.manaraa.com

-23-

predlcting the directional properties of bonds and thus 

geometrical molecular configurations. In the semi-

empirical approach, the calculated results for dissocia­

tion energies seem a3tonishingl7y accurate in viei; of the 

quite radical approximations Involved. This success is to 

be expected, of course, as Van Vleck and Cross (28) have 

noted. The simple TO energy formula is readily Interpret-

able in terms of attractive bonding terms and repulsive 

non-bonding terms (30, p. 376). Empirical application is 

bound to give reasonable results, insofar as additivity of 

bond energies (and "non-bond" energies) is valid. A purely 

theoretical calculation based upon the simplified formula­

tion probably vjould be much less encouraging. 

The credit ifhich is due to Coolidge's purely theoreti­

cal calculation is probably underestimated. With the in­

clusion of one ionic structure, which certainly should be 

included, the results are not too poor. They do, in fact, 

emphasize the need of introducing resonance. The simple 

theories supposedly obtain much better results without the 

need of such interaction. This is tindoubtedly due to a 

hidden resonance included in the empirical constants de­

rived from the OH molecule and utilized for H2O. If one 

is concerned only with the simple energetics of the bond 

formation, this is probably a valid procedure. On the other 

hand, the principle bases of VB theory have been thus lost. 



www.manaraa.com

-Zk-

A general formula for raoleoular energetics, wh,atever its 

form, would indeed be Interesting to have at one's dis­

posal, It is doubtful whether such could exist without 

a more firm attachment to theory. In the case at hand, a 

semi-empirical VB method without explicit inclusion of 

resonance, seems to be contradictory, 

A final point, and probably a very important one, 

should be made concerning the early TO calculations. In 

none of the treatments vras any possibility for hybridiza­

tion included. Especially for the water molecule, the 

effect of allowing 2s-2p mixing, or else the identical 

process of permitting resonance with an excited covalent 

structure, might be expected to be of considerable 

significance, 

The problems cited here might be thought of as the 

ones which are of present day concern* More detailed 

analysis of these problems T-rill be given later in this 

chapter, 

(b) treatments. The early application of the MO 

method was directed primarily towards building up a con­

ceptual schome or qualitative theoretical framework into 

which empirical data, both chemical and spectroscopic, 

could be fitted. To aid in this coiirse, rough LCAO approx­

imations were often introduced, laore for the sake of im­

proving clarity, than of securing quantitative accuracy. 
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Thls LGAO formulation of an MO may be T^rltten as 

follows: 

where the ^p's are ̂ 's belonging to some or all of the 

component atoms and the Cj^p are the LGAO coefficients. To 

a considerable extent, the latter are determined by symme­

try and orthonormality conditions, Lennard-Jones (31) 

first introduced the LGAO scheme for diatomic molecules. 

Also, he utilized localized M's for the molecular inner 

shells, a procedure generally follotred in the subsequent 

MO treatments. 

The general formulation of the electronic ground state 

configuration of H2O was Indicated in equation (2.11). 

This may be further qualified in the simple LGAO MO approx­

imation as follows: 

A • ̂  ®ip ̂ p » (2.23) 

(ls)2(2s)^{/y)2(;^^)2(2pz)2 , (2.2L1.) 

where 

/y » a2py + b(h' - h") (2.25) 

and 

» c2pz + d(h« + h") . (2.26) 
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The 2-axis bisects the H-O-H bond angle and the x-axis is 

perpendicular to the molecular plane. The relations be­

tween the coefficients of the equivalent 3^ hydrogen AO's, 

h< and h", are determined by symraetry. 

P. Hund (32,33) was the first to shot-j' that such a 

model as this tirould have its equilibrium bond angle at 

90 degrees. This result is obtained, however, by an over­

simplified calculation (3i^)« 

Mulliken (3^*36,37) utilized the simplified LCAO MO 

formulation of H2O first of all to predict and assign ioni­

zation potentials {]['s). The inner shell orbitals were 

supposed to have nearly the same I's as the valence state 

j['s for the isolated oxygen atom. For exsunple, the ̂  

localized IW would be estimated to have a "vertical" 

of about 32 electron volts and the 2px orbital about 

111,? electron volts (38)» Actually, the latter is shown 

to be about 12,6 volts, the difference being attributed to 

a transfer of negative charge from the hydrogens to the 

oxygen, introducing extra electronic repulsion on the 

latter. For a bond angle of 90 degrees, it was estimated 

that ionization from /g should require greater energy than 

from (39). This supposition was based upon the fact 

that involves H-H bonding, whereas is H-H antibonding, 

-"-"Vertical" I's correspond to vertical lines drawn between 
potential energy curves. They refer to non-adlabatic I_'s 
in which the distances between nuclei remain unchanged 
during the process (Pranc3t-Condon maximum of probability). 
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Mulllken predicted that these two ̂ 's would be nearly de­

generate or possibly reversed from the above order for the 

actual bond angle of 105 degrees (39,lt.O). 

Mulliken also established connections between relative 

electronegativities of atoms, LCAO coefficients, effective 

charges on atoms in partially polar molecules and dipole 

moments (1^1). On the basis of the greater electroaffinity 

of the oxygen atom, he assigned that a/b >1 and c/d >1 in 

equations (2,2$) and (2,26). These inequalities were then 

considered to account also for the dipole moment of H2O, 

the effective charges on the atoms being estimated from the 

latter as being roughly The molecular di­

pole was assumed to arise mainly on account of the polarity 

of the bonding MP's« 

The fundamental approach to the electronic struc­

ture of HgO was thus begun. Sound theoretical bases were 

still very far from being established, thus making the 

interpretations seem quite crude in nature. The latter, 

however, must not be allowed to obscure the real signifi­

cance which the theory really possessed. A systematic 

understanding of molecular electronic structure was being 

developed, a step certainly comparable to Bohr's explana­

tion of the hydrogen atom. 
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3. Recent advances 

(a) General. Many significant advances in the general 

theory of molecular structure have taken place since 

World War II, Immediate attention xms directed towards 

establishing the rainimuia number of simple, fundamental 

concepts so as to enable successful correlation of chemi­

cal experience* 

Heath and Linnett (2^) utilized the vibrational spec­

trum data of Darling and Dennison (I4.2) to express the po­

tential energy function of the H2O molecule in terais of the 

distortions of the bond angle and lengths. They attempted 

to account for the various forces operating in the H2O 

molecule by study and interpretation of the various cross 

and higher terras in this function. It was found that 

changes in 23-2p hybridization are able to explain satis­

factorily the signs of the cross-terms whereas repulsion 

between the hydrogen atoms is not a major factor in these 

respects. Furthermore, the coefficients of the cubic and 

quartic terras in the potential enerfTy function appeared to 

meastire only the departure of the bond dependence from the 

simple parabolic form. They closely resembled similar 

terms in the function for OH, and did not indicate any 

measure of interaction between the tvro bonds, the bonds 

and the angle, or between the hydrogen atoms. 
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In 19^1, Linriett and Poe (Ip) carried out calculations 

of the electron configurations having maximum probability 

for the atoms in the first short period. These were se­

cured by first setting up the Slater determinant (I|i|-) for 

the atom given a definite assignment of one-electron atomic 

spinorbitals, The ̂  was then squared and integrated over 

all spin coordinates leaving a probabilit:^ function depend­

ent only upon the spacial coordinates. The values of the 

latter which caused this probability to be a maximum were 

then found by differentiation or computation. Also deter­

mined were configurations of peak probability, that is, 

those which corresponded to a relative, but not an absolute 

maximum. 

For the oxygen atom with the electron configuration 

(lsof)(ls/3)(2soc)(23^)(2pz<^)(2pz/3)(2px(?r)(2py^) , (2.27) 

it was found that a configuration of peak probability 

existed in which there is a pair of electrons on the nucle­

us and two close pairs and two single electrons away from 

the nucleus arranged so that the total symmetry of the 

whole is C2y» The symmetrically arranged single electrons 

are on one side of the nucleus, their plane being perpen­

dicular to the plane of the pairs which are situated on 

the opposite side of the nucleus. The probable distances 
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fron the nuclei were 1.1 atomic units for the pairs and 

0.99 atomic units for the single electrons. The observed 

0-H distance in H2O is l,8l03 atomic units (29, p. I|.89). 

The angle between the single electrons was found to be 

103 degrees; between the pairs, 133a degrees; and between 

a pair and a single electron, 10ll|.-| degrees. 

Heath and Poe stress that the nuclear configuration of 

H2O may be expected to be related, to some extent, to this 

electron configuration of the oxygen atom. Thus, the un­

paired electrons on the latter pass into the pairs in the 

molecular bonds, and it is likely that the directions will 

be close to the directions of the single electrons. This is 

similar to Pauling's supposition (23,k-̂ ) that a bond will 

be formed in the direction in •tfeich the electron would most 

probably be found to its greatest extent. 

Similar computations for neon, the united atom of H2O, 

yield the expected angle between each of the four lone 

pairs to be 109i- degrees. The H-O-H bond angle, actually 

being 10l4.i degrees, is thus seen to lie between that for 

the united atom and the isolated oxygen atom* Heath and 

Linnett stress that the usual approach of assiming that the 

ideal bond angle is 90 degrees is illogical because it ig­

nores all other electrons except the outermost valency 

electrons. Repulsion between the hydrogen atoms is com­

paratively unimportant (vide supra), This treatment, on 
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the other hand, is maintained to be equivalent to consider-

ing 2s-2p hybridization with the further refineraent of ex­

plicit inclusion of the Pauli Principle. 

It is somewhat difficult to secure a complete and sat­

isfactory understanding of the paper by Linnett and Poe, 

The treatment is unconventional when compared to the usual 

approaches to molecular and atomic structure. There seem 

to be some apparent difficulties. For example, the authors 

consider only that configuration of the "ground state" of 

the oxygen atom in iirhich the bonding electrons have paral­

lel spins. Now, the ground state of the oxygen atom, 

having four electrons outside of closed shells, is not 

capable of expression in a single determinant. Secondly, 

the oxygen atom prepared for molecule formation is usually 

supposed to be energetically promoted to a valence state (38) 

in which there is a statistical distribution of spins in 

the bonding orbits. These factors possibly are not direct­

ly relevant to the present problem, but they certainly de­

serve some recognition and explanation. In this same 

connection, the treatment of Linnett and Poe is unique in 

that it makes no explicit recognition of the energy re­

quired and gained on molecule formation. Yet at the same 

time, the authors maintain that their method is equivalent 

to a study of hybridization, A VB treatment of hybridiza­

tion generally requires either consideration of the 
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alent study of the restricted resonance between various 

pure atomic valence states in zero hybridization (see foot­

note on page l5). 

A critical survey of the method of icnic-homopolar 

resonance was published by C. A. Coulson (1?) in 1951. 

This review discussed some theoretical difficulties and 

in addition cited sorae of the possible areas which merit 

further research. Also, there is a short discussion of the 

problem as applied to HgO. There are two surprising re­

sults which are discussed. First, the contribution of the 

electric moment of the two lone pair electrons to the di-

pole moment is calculated to be 3.19 D, This turns out to 

account for the principal part of the electric dipole of 

H2O, In the second place, ionic resonance in the 0-H bonds 

is found to contribute the astonishingly small moment, 

0.3U D. These figures are based upon very rougli considera­

tions, of course, but certainly serve to stimulate further 

study. 

At the Shelter Island Conference on t,,uantum Mechanical 

Methods in Valence Theory, in September, 19^1, M. Kotani (lit.) 

reported on an investigation of the TO approximation as 

applied to HgO. The computations constitute a general 

study of the resonance in the ground state involving many 

possible non-ionic structures, or states. The approximations 
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which were included should first be en\imerated: (1) over­

lap integrals between orbitals belonging to different atoms 

were neglected; (11) seml-emoirical values for the coulomb 

and exchange integrals were assumed; and (ill) direct 

interaction between the tvjo hydrogen atoms was neglected. 

The results are important in that they roughly support the 

contention that the elgenfunctlon of a ground state can 

have rather large contribxitlons from "excited" TO states. 

The latter may be states differing in the ordinarily as­

sumed assignment of bonds as well as including the possi­

bility of having two electrons in a bonding orbital, 

Mulliken and co-v;orkers (14.6) have discussed refine­

ments of the MO theory as applied to H2O, It is first 

recognized that bonding, as well as 23-2p hybridization 

may occur in the orbital which was originally assumed to 

be a localized lone pair orbital of pure ̂  oxygen char­

acter. In such an event, the bonding in will necessar­

ily be weakened, but there will be an overall strengthening 

of the total molecular binding. The reasons for these 

facts may roughly be understood as being analogous to the 

resonance phenomenon which is continually encountered in 

VB theory. This reasoning thus seems to establish the 

order of energy of the MO's as follows; 

ls)2)!^g)2/y)2^^)22px)2 ^ (2.28) 
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where /^g indicates a nonlocallzed MO largely composed of 

2s character. 

Mention should be made of a discussion by A, D, Walsh 

(I4.7) to the effect that the order ';iven in equation (2.28) 

is incorrect. It was contended that because of 2s-2p2 hy­

bridization, becomes essentially a non-bonding or lone-

pair orbital. There are three observed j['s for H2O, of 

which only the first and third are observed spectroscopl-

cally as Rydberg Series (i|.8,i4.9,50}. Walsh points out that 

strongly bonding electrons, such as those in /y, are not 

112i:ely to give a series of discrete transitions. 

These contentions are also supported by the fact, 

which ims first pointed out by Mulliken (vide supra), that 

is H-H antibonding and, therefore, should probably be 

higher in energy than This diffictilty may be partially 

explained by two considerations. First of all, it can be 

shown that the energy of an ̂  increases with the number of 

nodes which it has (^1,52). The orbital has a node de­

manded by syrmnetry which automatically makes it H-H anti-

bonding. On the other hand, has a node demanded by 

orthogonality conditions (with /g) which nearly passes 

directly tlarough the oxygen nucleus. This latter node is 

thus present In a region of highest electron density and 

might be expected to Impart a low ̂  (high energy) to the MO. 

The other fact is that although /y is H-H antibonding, and 
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is H-H bonding, the former is expected to have relative­

ly greater 0-fI bonding power. This is especially true for 

the observed bond angle of 105 degrees. The latter is, of 

course, the important factor, and vrould tend to give the 

lower energy (higher I), 

In order to reconcile the fact that ionization from fij 

supposedly gives a Rydberg Series whereas does not, an 

analysis of the requirements for such a phenomenon should 

be made. A Rydberg Series, it is true, generally arises in 

the ionization of lone-pair electrons. The reason for this 

is that the ionized state is usually a stable one of ap­

proximately the same geometrical configuration as the 

ground state. Lone-pair electrons are not expected to be 

missed vei'y much by a molecule. Thus, the prime requisite 

for a discrete set of transitions seems to be just these 

conditions. Now, one may consider the results to be ex­

pected from an ionization of a. or a. electron. If one 

electron from is ionized, there is a consequent loss of 

0-H bonding and H-H antibonding. The latter effect vjill 

tend to cause the H-O-H bond angle to become lessened. But 

with the loss of one electron, it is quite possible that 

the two jltz electrons will be permitted to reorganize, that 

is, to move into the 0-H bonding regions from which they 

were formerly excluded partially because of electrostatic 

repulsion. With the lessened H-O-H bond angle, the 
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electrons -will be in a better position to give significant 

contribution to 0-H, as trell as H-H bonding. The super­

posed repulsion of the hydrogen nuclei will be expected to 

restrict the bond angle decrease to a rainimum. It is thus 

quite possible that loss of a electron would result in 

a stable configuration differing little from that of the 

ground state. 

If a electron is ionized, the proportion of H-H 

antibonding to bonding is increased. There seem to be no 

important factors present here to restrain the bond angle 

from considerably increasing. This could conceivably lead 

to an unstable ionized species. Consequently, a consider­

able number of discrete transitions leading to the ionized 

state, as is observed for the third I, would be unlikely. 

It should finally be stressed that there is no real 

reason for contending that /g is very lone-pair like. It 

can be said that hybridization vrill lead to a weakening of 

the bonding in /g. This will result in more electron den­

sity on the back side of the oxygen than if hybridization 

had been neglected. The orbital will still be somewhat 

bonding and will still be predominently non-localized, 

J, k, Pople (53) carried out a unique treatment of H2O 

using as a basis the Lennard-Jones method of equiv­

alent orbitals {^'s). This approximation is an W treat­

ment, It depends upon the fact that an AP wave function 
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remains unchanged when subjected to a unitary transfoma-

tion (1), There is such a transformation that will cause 

any ̂  to be such tlmt each of its one-electron functions 

is by itself an eigenfunction of a Pock (modified 

Sclirodinger) equation. These are generally denoted as 

ITO's. Any other unitary transformation of this ̂  will 

give one-electron functions which are not eigenfunctions 

and which are called ̂ 's. For HgO, such a set might be 

made to roughly correspond to two lone pairs and two bond­

ing BO'S (neglecting electrons). 

Pople's treatment began with the general LCAO formula­

tion of the ^'s. Inner-shell-outer-shell mixing was neg­

lected, only the 2s_ and ̂  oxygen and ̂  hydrogen AO's 

being explicitly considered. The lone-pair ̂ 's were then 

secured by a unitary transformation of the W's, a step 

x-;hich does not involve any loss of rigor. Three explicit 

approximations were then utilized in the formulation of 

the bond SO's: the orbitals were assianed to be localized; 

the oxygen hybrids in the ̂ 's were assumed to be directed 

along the line of nuclei of the bonds; and the condition of 

orthogonality between bond ̂ 's was simplified. A recent 

refinement of the method (58) has eliminated the last 

approximation. With these assumptions, the ordinary condi­

tions of orthonormality of the EO's determine all but one 

of the LCAO coefficients. By introducing the empirical 
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value for the dipole iiioment, the EC's were detenained. The 

initial calculation (^3) included an approximation for one 

of the electric moment inter^rals, which was, hoi^ever, 

rigorously evaluated in the most recent xirork (58). 

The most significant result of this treatment is the 

fact that the lone-pair electrons are found to be chiefly 

responsible for the dipole moment of HgO, This supports the 

results of the simple VB considerations by Coulson (17). 

(b) The Principle of MaximuiTi Overlap and the magic 

fomula, In 1931» Slater (26) and Pauling (23) proposed 

as a rough measure of the strength of any covalent bond, 

formed by two electrons on adjacent atoms, the Principle 

of Maximum Overlap of the orbitals occupied by these elec­

trons. This principle has been of great iiaportance in the 

development of simple quantum mechanical analyses of chemi­

cal structures. Pauling and Sherman found it conven­

ient to call the magnitude of a bond orbital in its angular 

dependence the strength of the bond. Mulliken (^9) and 

Maccoll (60) have Independently proposed the more satisfy­

ing criterion of maximising the radial and angular dependen­

cies simultaneously. Recently, Mulliken (61) has given a 

more elegant quantitative form of this principle which he 

calls the magic formula. 

The Principle of Maximum Overlap has been applied to 
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HgO in only a very restricted sense. It has been indicated 

that to the first approxiraation the bond angle will be 

90 degrees in order to secure the best overlap between 

Is hydrogen ;^'s and pure oxygen ̂ 's. The txjo main 

factors that alter the situation, transfer of charge from 

the hydrogens to the ox^v'-gen and 23-gp hybridization, have 

been generally only qualitatively stated. 

The magic formula in its present form is to some 

degree limited by the fact that the corrections needed for 

resonance energy are still lacking. These are certainly 

required for a complete application to 

It has, nevertheless, seemed apropos to apply these 

tXiTO simple quantum chemical principles explicitly to HgO. 

A study and comparison of the results should yield quali­

tative information regarding the electronic properties of 

H2O as well as assist in evaluating the tvTO methods. 

The VB electron configuration for the covalent struc­

ture of H2O may be x-iritten 

. (2.29) 

The ftmctions /z^q, and are imderstood to be hybridized 

oxygen ̂ 's (see page 1$) based upon the second-order 

valence state (62) 
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0; . (2.30) 

Tlie hybrids may be formulated in the LCAO approximation as 

follows: 

s -{1 - '2pz + 2^c^^2s 

.1 « i 
^1 " °11^P^' 2^2py + 2~^'{1 - 20^2^*^)^2s (2,31) 

= =,,2p. - Apy t 2-̂ (1 - 20u2)®23 . 

The coordinates used here are the same as described on 

page 26. Positive overlap is given by ̂  with 2pz and 2py. 

The LCAO hybridization coefficients have but one degree of 

freedom, manifested in a-il' other parameters are 

restrained by orthonoriaality and symmetry conditions. 

It should be empliasized tMt consideration is being 

made here only of the covalent structure of HgO correspond­

ing to the state A of equation (2,12). 

The maximization with respect to the parameter of 

the overlap between and is equivalent to that betxwen 

h" and ̂ 2 syrnmetry, and is conditioned by the equation 

dS(h',/e^i)/dC]_]i = 3(h',2pz) 

-V o ^ 
-2''c^3^(1 - 2c^3_^)"''- S(h«,2s) s 0 

(2.32) 
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The orbital 2pz may be resolved into a combination of 2pq' 

and 2pir AO's relative to the 0~H bond according to the 

equation: 

2pz = 2p(r sin w - 2p'rr cos w , (2,33) 

where w is the anrle between 0-H' and the y-axis. Since 

S(h',2pTr) = 0, equation (2.32) can be solved to give 

®11 ~ 2 ^^(1 + sin^w) ̂  P sin XaT , (2.3Ii.) 

where P s S(h',2pcr)/s(h',2s). 

Incidentally, it is proven that the extremmi defined 

by equation (2,32) is a maximum, since 

d%{h',j!(i)/dC3^l2 s -.21/2(1 .2c^3_2)-3/2s(ht, 2s )< 0 (2.35) 

if 2"'% 

Per convenience, the hybrids given in equation (2,31) 

are relabeled as follows: 

^o " ̂ oi^P^ ^ °02^® 

^1 * °ii2pz + 2""^2py + (2.36) 

^2 " °ii2pz - 2"'^2py f o^^23 , 
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The results determined from equation (2,314-) foi' three 

values of the H-O-H angle are given in Table 2, The cal­

culations were carried out utilizing orthogonalized Slater 

orbitals (63) with the iisual effective nuclear charges: 

S(2s) = Z(2p) s and Z{h) = 1. 

Table 2, Application of the Principle of Maximum 
Overlap to H2O 

H-O-H 
bond angle c c„„ c.. c S(h',/?^T) S(h',;^p) 
(degrees) ^1 02 11 12 J- ^ 

90 -0.90 O.I{.^ 0.32 0.63 0.56 0.21 

105 -0.92 0.39 0.28 0,65 0.576 

120 -0.9i|. 0.33 0.2!i 0.67 0.58^ 0.16 

It is first of all interesting to note that if the 

bond hybrids and were directed straiglit toi^rards the 

hydrogens to which they are bonded, the coefficient c^i 

would have the values 0.7I, 0.5ij- and O.I4.I for 90, 105 and 

120 degrees, respectively. Therefore, the hybrids are bent 

outwards beyond the 0-H bonds. The required orthogonality 

between f^i and combined with the fact tiiat a large 

degree of 2^ character is required for good overlap, is 

probably the cause of this result. In actuality, one 
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might expect a situation whereby the bonds are bent in­

wards, so as to provide a higher concentration of charge 

within the molecular triangle. 

Upon cursory examination, the results also indicate 

the surprising conclusion that a bond angle greater than 

120 degrees seems to be favored. This conclvision is 

reached by assuraing that better bonding is attained only 

when overlap is increased. Hydrogen-hydrogen interaction, 

which in this TO representation would be an exchange repul­

sion, has not yet been included. 

It can be shown that the overlap between the hydrogen 

Is AO's and the lone-pair hybrid /q is equal to zero for 

all angles* The maximization has, therefore, extracted all 

possible overlap and concentrated it in the bonding hy­

brids, This treatment has, therefore, not taken proper 

cognizance of Pauling's supposition (2i}., p, 87) that the 

tendency to use best bond orbitals is resisted in the case 

of atoms with an unshared pair, since the latter incline to 

remain as more stable This brings to light the 

chief objection to the present application. The lone-pair 

electrons have not been restrained in any way from being 

highly promoted from their stable 2s state. The gain in 

bonding energy by maximizing bond overlap, which apparently 

is equivalent to minimization of non-bonding overlap, v;ould 

undoubtedly be largely lost by the energetic promotion of 



www.manaraa.com

the 2s electrons. 

It might thus be concluded here that the Principle of 

Maximuia Overlap in its rudimentary forni should be raain-

tained only as a most qualitative principle. It is to be 

anticipated that hybridization leading to increased bond 

overlap, and consequently, decreased non-bond overlap, is 

always working in competition with the promotion energy 

required to achieve such a valence condition. The usual 

rough concept of chemical bond formation consists essen­

tially of tx^ro steps: (i) an excitation of the atoms to 

hybridized valence states, a process mlch requires energy; 

and (11) the bringing together of the atoms, a process 

which leads to a lowering of the energy. This lowering is 

emphasized if the bond overlaps are Increased (the Prin­

ciple of Maximum Overlap), However, Increasing the over­

lap by hybridization requires energy, A happy medium might 

be a maximization of the bond ener{!;y as a function of bond 

overlap minus the promotion energy required for the process 

of hybridization. 

For the covalent TO configuration of HgO as given in 

equation (2,29), the magic formula (61) for the dissocia­

tion energy Dq takes the form; 

Do = 2X(h«,^) - - 2Y(h',l3) 
(2,37) 

-Y(h«,h") + 2K(h',2px) - P + RE , 
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The first term on the rirht hand side corresponds to the 

bond exchange energy and the next five terms to non-bonding 

exchange interactions. The seventh terra denotes the promo­

tion energy and RE refers to resonance energy. 

To determine the proraotion energy P, the antisyrame-

trized T^ave function for one spin-orbit configuration of 

the second-order valence state Vg' (62) of oxygen, defined 

in terras of the hybrids of equation (2,31), is vjritten in 

determinantal form. There are four such determinantal vmve 

functions, a linear corabination of ifhich defines the va­

lence state Vg'# The individual functions correspond to 

all possible assignments of spin to the two bonding or-

bitals four configurations vrill thus be 

degenerate and non-interacting in this approximation, and 

it is sufficient to consider P for only one spin-orbital 

configuration determinant. The latter is expanded accord­

ing to the rules for detei-'minants into a linear combination 

of AP's in first-order hybridization. It can be ahovm that 

^ ^ (2,38) 

+ (1 - ) , 

where k, £ and £ are the conventional abbreviations for 

Is, 23 and respectively, ITaerefore, 
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ECVg') " 

(2  "^9^  
+ (1 - 2c3i3_^} E(k^sp^,V2) » 

and 

P - ECVgO - E(k^sS^,3p) 

P (2.1}.0) 
a Pq + (1 - 2.0^"^) AP , 

where 

Pq » Edc^s^pJl,?^) - E(k2s2pi|-,3p) (2.i|.l) 

and 

AP « E(k2sp^,V2) - E(k2s2pl+,V2) . (2.[|.2} 

The actual computation of the various terms of equa­

tion (2.37) is accomplished using formulas given in 

reference (61), These formulas involve two parameters 

determined by fitting empirically the magic formula to the 

molecules CH, 02* Ng and The X's and Y's are then 

functions of the overlap integrals between the various 

orbitals as well as of suitable mean value valence state 

^'s. The K is small and computed theoretically. 

The first three terms of equation (2.37), as well as 

the promotion energy P, are fxmctions of the hybridization 

parameter Therefore, the part of containing these 
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terms, call It D', is laaximlzed with respect to for the 

H-O-H bond angles of 90, 105 and 120 degrees. The results 

are given in Table 3» It is seen that, for all practical 

purposes, the best hybridization is independent of bond 

angle in this region of angles. There is a slight tendency 

toward a lesser value of Cj^j^ as the bond angle increases. 

This corresponds to a greater 2s-2pz promotion in the lone-

pair hybrid which results in relatively higher 2py/2pz 

character in the bonding orbitals. The latter is, of 

cotorse, to be favored as the bond angle increases, 

E'er comparison with Table 2, the overlap integrals 

derived from the magic formula are listed in Table I)., The 

hybridization coefficients used are those from the 105 de­

gree computation, namely. 

Cn-i • -0,1|10 CiT • 0, 6I|.5 
(2.11.3) 

®02 "  • 

It is interesting, at this point, to compare the results 

with those from the maximvim overlap treatanent. 

It is seen that the degree of ̂  promotion in 

much less than for the maximum overlap treatment. The 

coefficient cj^i is such that and directly aligned 

towards and h", respectively, for a bond angle of about 

95 degrees (see page ij.2). For bond angles greater than 
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Table 3» Maximization of D' v^ifh. respect to 
hybridization (a.u.) 

Terras of 
eq. (2.37) 

H-O-H 
bond angle 
(degrees) 

°11 Terras of 
eq. (2.37) 

H-O-H 
bond angle 
(degrees) 0.60 0.614. O.6I4.5 0.65 0.7071 

90 0.14.993 0.14.616 O.I4.787 O.I4.757 0.3832 

2X(h',/8̂ ]_) 105 0,14.998 O.I1.812 O.I4.782 0.14.751 0.3808 

120 O.I4.769 0.1}.738 0.14.7014. 

90 0.0871 0.1222 0.1275 0.1329 O.25I1-2 

2Y{h',/3_) 105 0.0983 0.1329 0.1379 O.II4.32 O.25I4.2 

120 0,114.52 O.II4.99 0.1550 

90 0.0131 0.0091 0.0085 0.0080 0 

105 0.0071 O.OOlj.1 0.0037 0.0033 0 

120 0.0011 0.0009 0.0007 

(1 - 2ci3_2)ap 0.1697 0.1096 0.1018 0.09I4.0 0 

90 0.22914. 0.21}.07 O.2I1O8 0.2I4.09 0.1290 

D' 105 0.2214.5 0.231|.6 O.23I4.7 0.2311.6 0.1255 

120 0.2209 0.2211 0.2207 
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thls, the hybrids are bent inwardly as one might expect. 

Prom, the magnitudes of the overlap integrals, as well 

as of the corresponding ener,?r/ terras in Table 3» it is seen 

that there raust be considerable repulsion between the hydro­

gen valence shells and the inner /q lone pair, Tiis point 

Table Ij., Overlap integrals for HgO from 
the magic formula 

H-O-H 
bond angle 
(degrees) 

S(h',/o) 

90 0.3^03 0.14-7^9 0.1280 

100 0.3^95 0.I4.760 0.0991 

105 0,36k3 O.I4.751 0.081^8 

110 0.3693 0.1|735 0.0705 

120 0.3798 0»l|.686 0.0i]25 

is relevant to the inner-shell-outer-shell repulsion en­

countered in molecule formation which is discussed exten­

sively by Pitzer (6i|), The maximum overlap treatment gave 

eqiaal to zero. The repulsion between a hydrogen 

valence shell and the oxygen hybrid of the other bond, 

given by Y(h', is seen to be quite negligible except 

for smaller bond angles. 
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In Table 5 are listed the resulting Dq values obtained 

be adding in the fourth to seventh terms of equation (2,37) 

to D'. It Is seen that there is a definite maximum in the 

dissociation energy (rainimum molecular enevgj) at a bond 

Table Computed Dq values from the magic formula 

H-O-H 
bond angle 
(degrees) 

D' 
(a.u.) 

-y(h',h") z® 
(a.u.) (a.u.) 

Do 
(a.u.) 

Do 
(e.v,) 

90 0.2k09 -o.oii.oo 0.0311^ 0.2320 6.31 

100 0.2376 -0.0318 0.2369 6.It.5 

10< O.23I47 =.0.0285 0.2373 6.I1.6 

110 0.2308 -0.0256 0.2363 6.11-3 

120 0.2211 -0.0211 0,2311 6.28 

a. Z a -y(hSls) + 2K(h',/3} - Pq 

s -0.0015 t 2(0.0286) - 0.02l).6 (a.u.). 

b. Values are the sarae for all bond angles. 

angle slightly less than 105 degrees. I4ulllken obtains an 

average difference per electron pair bond between observed 

and coiaputed Dq values of about 10.3 electron volts. 

The RE correction for H2O is expected to be consider­

able. No siiaple methods are presently capable of treating 

this problem. The position of the energy minimuias for the 
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structures Hq and A ̂ of equation (2,13) would certainly 

be nearly or actually equal to l80 degrees, Depending, of 

course, upon the Interaction at the various angles, one 

would expect such resonance to lead to a greater equilib­

rium angle for the resonating hybrid, 

C, SCP MO Treatments of Other Molecules 

1. Introduction 

All of the treatments of H2O which have been reviewed 

thus far have been carried out according to what Mulliken 

(65) has termed qualitative and semi-empirical methods, 

Roothaan's LCAO SCF MO theory (1), on the other hand, is 

referred to as an approximate theoretical method, that is, 

one which is purely theoretical, but uses approximate MO 

eigenfunctions of the LCAO type. Rather than here describe 

the Eiethod In detail, it is adequate to refer either to 

Mulligan's brief review of the subject (66) or to the 

original works (1,6,67). 

2, Applications 

The early approximate theoretical molecular treat­

ments were necessarily and naturally confined to simple 

systems. For example, C, A. Coulson (68,69) carried out 
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extensive studies of and li2^» comparing the LCAO treat­

ments with more sophisticated methods as well as studying 

the effect of varying the screening constants (effective 

nuclear charges) contained in the ̂ 's. Also, Coulson and 

Duncanson (70) studied the LCAO approximation as applied to 

HeH"'' and HeH'^+, again making comparisons of the results 

with more exact variational procedures, as well as with an 

exact treatment for the latter molecule* In 1914-3> these 

same researchers (71) carried out LCAO MO treatments of Li2 

in several approximations* This work is especially valu­

able for its discussion on screening constants and the 

effect of neglecting orthogonality. 

Utilizing the Huckel iT-electron approximation (72) 

for aromatic molecules, Goeppert-Mayer and Sklar (73) 

carried out the six-electron non-empirical treatment of 

the excited states of benzene. This calculation essen­

tially uses LCAO SCF wave functions, and was responsible 

for much of the theoretical progress which has been made 

with respect to the unsaturated hydrocarbons. Inasmuch as 

numerical errors were present in this work, and three-

center integrals were neglected, the treatment (vxithout CI) 

has undergone final correction by Roothaan and Parr (714-)* 

The benzene problem has also been investigated with respect 

to variation of the effective nuclear charge of the carbon 

2pTT AO (75)« Crawford and Parr (76) utilized the method 
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in calculating the ring twisting constants for benzene. 

The TT-eleotron approximation in its SCP MO form has been 

applied also to butadiene by Parr and Mulliken (77)» to 

ethylene by Crawford and Parr (78), to allene by Parr and 

Taylor (79), and to acetylene by Ross (80). For ethylene 

and allene, vibrational frequencies were also computed, and 

for acetylene, the validity of the Huckel approxljaation 

was examined. 

In recent years, the trend has been to investigate 

the success of the SCF MO method as applied to heteromole-

cules. Mulligan carried out a complete 22-electron treat­

ment of COg (66). Although approximations for many of the 

integrals were necessary, and no inner-shell-outer-shell 

mixing was allowed, the work may be regarded as quite 

successful. 

I. Fischer ( 8 I )  has carried out a very complete 

LCAO MO treatment of LiH. The results are compared with 

various VB approximations, as well as simplified versions 

of the MO method. Other recent SCF treatments which de­

serve mention are those by Fischer on aniline (82), by 

Duncan on SF^^ (83) and by Berthier on fulvene (81}.). These 

latter three cases utilize the Goeppert-Mayer and Sklar (73) 

effective core hamiltonian method for the potential due to 

inner non-valence electrons. 



www.manaraa.com

-514.-

III. THE LCAO ̂  SSLP-CONSISTENT PIl^LD TREATMENT OP H2O 

A, Application 

1, General 

The initial aim of the present calculation was to 

determine the best LCAO MO's for the ten electrons of the 

ground state of H2O, The general method followed was that 

developed by Roothaan (1), All of the electrons were as­

signed to MO's extending throughout the molecule. In addi­

tion to this complete treatment, a second calculation was 

performed which contained the conventional approximation of 

replacing the innermost moleoular shell by an oxygen 

Slater orbital, and which considered no Is-mixing in the 

outer shells, 

(a) The selection of M's, In those calculations, the 

following Slater functions (63) v/ere utilized; 

for the oxygen atom. 

Is « 0 « exp {-jii-j^ro) 

2s' » s' = ja2^/2(3Tr)-V2 PQ expC-^jigro) (3.1) 

2pz s z = Pq ®o ©xpC-ja^ro) 
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2px a X = sin Qq coM© exp(->i2ro) 

2py ay" r© sin 00 sln/j^o expi-p-^rQ) ; 

and, for the hydrogen atoms, 

Is,^, s h' » exp{-)x rj^,) 

ISj^t, « h" = expi'p r^„) . 
(3.2) 

In general, ;ip is equal to Ep/np, where Z.p is referred to 

as the effective nuclear charge, and np is the principle 

quantum number of the AO. 

The attainment of best possible LCAO MO's depends 

upon the selection of the ^'s. In the past. Slater-type 

AO's with the ordinary Slater Z's (63) have been most com-

rtionly used. Also, best Z-values for the free atoms are 

often utilized. It is to be expected, and there is evi­

dence to this effect (6,68,81,85)» that better results 

might be secured by independent variation of the Z's, even 

among identical AO's in different MO's. Such a procedure 

would, of course, entail very much additional work. There­

fore, In this research, the following Slater ̂ -values were 

used: 

= 1 

Pi = 7.7 (3.3) 

P2 - 2.275 
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Tliese are in reasonable agreement with the values which 

give the best analytical approximations of the Hartree-Pock 

atomic orbitals (86), namely, 

p. = 1  

= 7,68 O.lj-) 

s 2.22 . 

All of the oxygen ̂ 's given in (3*1) are mutually 

orthogonal with the exception of 3^ and 2s'. Neglect of 

such orthogonality can cause serious errors in the simple 

Hartree method which does not utilize an ̂  wave function 

(3i|,68), No such error would occur in the present work, 

although the results would be chanc-ed somexirhat. For con­

sistency in formulation, it is convenient to preserve or­

thogonality between ̂ 's on the same atom. Orthogonal 

2s AO*s were constructed from the original nodeless 2a' 

and oxygen (i^.6); 

2s = S S (1 - (2gt . Qls) , (3.5) 

where Ci is the overlap integral between the and 2s' AO's. 

(b) Coordinates and Internuclear distances. The co­

ordinate systems used in these calculations are diagramed 

in Figure 1. The x-axis (not shown), is perpendicular to 

the plane of the molecule. The arrows indicate the 
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2 

Pigxire 1. Coordinates used for tlie H2O 
calculations 
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positive direction of the axes. 

The transformations relating these coordinate systems 

may be v/ritten as follows; 

2 • z'sin w - y'cos w = 

7/ = z'cos w + y'sin w = 

y' = y sin w - z cos w = 

2« = y cos w + 2 sin w = 

y" = y sin w + z cos w s 

z" = -y cos w + z sin w = 

z"sin w + y"cos w 

-2"cos w + y"sin w 

~z"sin 2w - y"cos 2w 
(3.6) 

-z"cos 2w + y"sin 2w 

-y'cos 2w + z'sin 2t^ 

-y'sin 2w - z'cos 2w 

It is to be noted that the ̂  oxygen based upon the 

various coordinate systems transfom according to these 

equations (I1.6), The 2g^ oriented in the various direc­

tions will often be designated according to these axes in 

a manner Illustrated as follows: 

2p2 » z 

2py' » y' (3.7) 

2pz" = 2" . 

In these calculations, the experimentally observed 

0-H distance, 0,9^81 angstroms (^.2) or 1,8103 atomic units, 

was used throughout. The SCF calculations were carried out 

for six different values of the H-O-H bond angle: 90, 100, 

105, 110, 120 and I80 degrees. 
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(c) The fomatlon of In order to obtain proper 

s7/inmetry for the MO's, it is usuall:/ convenient to intro­

duce spnmetry orbitals (S£'s) (1). These are linear com~ 

binations of ̂ »s taken so as to belong to irreducible 

representations of the symmetry group of the molecule. 

The HgO molecule belongs to the symmetry group C2v (S7)« 

The construction of the SO's from the ^'s may be ex­

pressed in matrix form as follows; 

.•!- 1 
2"" 0 0 0 2"'^ 0 0 h' 

0-2 0 1 0 0 0 0 0 o 

0 0 1 0 0 0 0 s 

z 0 0 0 1 0 0 0 z 
\ 1 

''s' 
2"« 0 0 0 -2"2 0 0 h" 

«•& 0 0 0 0 0 1 0 1 

6-j 0 0 0 0 0 0 1 X 
k / 

The first four SO's have s^^mmetry, cr^ and cr^ have 

and cr^ has sjnmrietry. It is to be noted that the SO's 

involving the equivalent hydrogen ̂ 's are not normalized. 

The corresponding normalized ̂ 's are 

(T-r a 2"%T(h» + h") = S'^Fl t S(h',h")] "^(h« + h") 
1 1 (3.9) 

cr^ « 2"%T^(h' - h") 5 2"S'[l - S{h',h")] "®(h» - h") , 
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where .S(h',h"} denotes the overlap integral between the 

two hydrogen AO's. 

(d) The formation of the MO's, By taking linear com­

binations of ̂ 's possessing the same syimnetry, a like 

nmber of |W's having that symmetry are formed. The latter 

are given in matrix form as follows: 

®ii °12 °13 °li}- 0 0 
> 

0 ^1 

/(2a;j^) °21 °22 °23 °2li. 0 0 0 
^2 

°31 °32 C33 0 0 0 

m 
%1 %2 %3 

0 0 0 

0 0 0 0 0 

/(2b2) 0 0 0 0 °65 °66 0 
^6 

0 0 0 0 0 0 °77 ^7 

The ̂ 's are denoted by the symbol of the irreducible rep­

resentation to which they belong, preceded by a running 

number distinguishing orbitals of identical symmetry. 

The coefficients in the which are occupied (by 

txTO electrons) in the ground state ̂  will be designated 

by the general symbol Cj_p. For HgO, these occupied MO' s 

are /(la^), /(Ibg) and /(Ib^). The SCF 

procedure also yields the coefficients and eigenvalues for 

the unoccupied orbitals and » These will not 
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be of iimiediat© concern in these calculations, but will be 

pertinent to later discussion concerning excited states. 

The problem will be the detemination of the coeffi­

cients Cji^p. These could be referred to as linear-

combination-of-syimnetry-orbitals (LCSO) coefficients. 

Inasmuch as they are related directly to the M's by (3.8), 

they will be called by the more coinraon name, LCAO 

coefficients. 

2, Determination of the best LCAO MP's 

The ground state electronic energy of H2O in the MO 

approximation (without CI) is given by equation (2,l{,), in 

which is replaced by § q (see page 9). In the LCAO 

approximation, $ q is the ̂  of those given in equa­

tions (3.10) which are considered to be filled in the low­

est energy electronic configixration. 

To determine the SCF orbitals, it is necessary to 

solve the equations 

F Ci " S Cj[ . (3»11) 

An equation of this type becomes identical with an ordinary 

eigenvalue problem of a hermitian matrix if S is replaced 

by the unit matrix. The detailed development of this equa­

tion is given by Roothaan (1). A brief derivation is out­

lined in Mulligan's paper on CO2 (66). In equation (3.11), 
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P may be regarded as the total electronic energy matrix, 

and is equal to the sum of the bare nuclear field energy 

matrix H and the total electronic interaction matrix G. 

The 0^ are col\ann vectors, the elements of which are the 

°ip given in (3,10). 

All of the calculations were carried out using the 

non-normal!zed SO's as given in equations (3.8). There­

fore, all of the equations and tables will be given in 

terms of these orbitals with the excei)tion of the final 

SCF MO results (e.g. Table 16). 

(a) The ^-matrix. The elements of the S-matrix are 

very simply given in terms of overlap integrals involving 

SO'sj that is. 

where p and q denote the row and column, respectively. 

These are computed from the appi-'opriate overlap integrals 

over ̂ 's (see Tables 9 and 10), The final values for the 

various bond angles are given in Table 6, 

(b) The H-matrix. This matrix includes the kinetic 

energy of the electrons and their potential energy in the 

field of the tlaree nuclei. The elements are given by 

(3.12) 

H (3.13) 
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Table 6. Hon-zero elements (Spq) of the S-niatrices 

H-O-H bond angle (degrees) 

p q 90 100 105 110 120 180 

1 1 l.HjJiJiO 1.3958 1.371^6 1.3553 1.3223 1.214.06 

1 2 0.0862a 

1 3 0.699i|.a 

1 li. 0.3i|.79 0.3163 0.2995 0.2822 0.2ij.60 0 

2 2 i.ooooa 

3 3 l.OOOOa 

i|. k. l.OOOOa 

5 ? 0.5560 0.60î .2 0.625?4- 0.6l}i}.7 0.6777 0.7$9k 

5 6 0.3i|.79 0.3769 0.3903 O.I4.O3O 0.l|26l O.I1.92O 

6 6 l.OOOOa 

7 7 i.ooooa 

a. Values are the same for all bond angles. 
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where 

EF = - (l/r^'M) - (l/rti'>) - (Q/rOp) . O.llj.) 

The numerical values for the H-matrix elements are given in 

Table ?• These have been computed from the appropriate 

kinetic energy integrals over AjO's (see Tables 8, 9, 10) 

and bare nuclear field repulsion integrals over SjO'a 

(see Table 15). 

(o) The G-matrix. The terms of this matrix present 

the most difficult^/. They represent the interaction of an 

electron in the MO with all of the other electrons of 

the molecTile, Each element is a rather complicated func­

tion of all of the LCAO coefficients oip, which are ini­

tially unknown. Therefore, once given a set of assumed 

cjp's, it is convenient to have a fast method for computa­

tion of the Gpq's, Mulligan (6) has devised such a proce­

dure, ̂ irhich will be followed here. 

The elements may be -written in general as 

follows (1,66); 

Gpq s 12 2^ c^j, Gppqg C;£a 
i r a 

(3,15) 

where 

'^prqs * ^Jprqs ~ ^prsq (3.16) 
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Table 7. Eleraents (Hpq) of the H-matrices (a.u.) 

H-O-H bond angle (degrees) 

p 1 90 100 105 110 120 180 

1 1 -7.i|.982 -7.2235 -7.1025 -6.9927 -6.803ij- -6.3572 

1 2 -2.7533 -2.7528 -2.7527 -2.7526 -2.7523 -2.7516 

1 3 -5.11^-31 -5.1303 -5.1233 -5.1162 -5.1063 -5.0721}. 

1 ll. -2.[{.395 -2.211|7 -2,0957 -1.9755 -I.72I1.2 0 

2 2 -33.0598^ 

2 3 -0.3165®-

2 li. -0.0233 -0.0212 -0.0201 -0.0189 -0.0165 0 

3 3 -8.1120^ 

3 I}. -0.2579 -0.23)4.5 -0.2221 -0.2092 -0.l82i|. 0 

if U -7.6l|i|3 -7.6229 -7.6123 -7.6021 -7.5825 -7.5207 

5 5 -2J+398 -2.6606 -2.7586 -2.8lj.80 -3.0030 -3.3668 

^ 6 -2.2500 -2.101.311. -2.53li.6 -2,6187 -2.7736 -3.2258 

6 6 -7.61143 -7.6658 -7.6763 -7.6866 -7.706I -7.7679 

7 7 -7.5207® 

a. Values are the sasie for all bond angles. 
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and 

Jprqs " (PQsrs) - fcJp^ oi."^ CqP- dvM^^ . 
^ ^ (3.17) 

The sxainraatlon over i is taken over all W's of the closed-

shell ground state* The sumraations over r and s are deter­

mined by the non-zero coefficients contained in the various 

LCAO MO's. 

Iftxen equation O.l^) is expanded in general terras, the 

result can be written 

114. , V 
Gpq « dn • {3«l8) 

The Dpq^^^'s are linear combinations of integrals of the 

type (3.17)• These suras may be x^ltten in general as 

follows; 

Dpq'̂ ' s 2(pq:ll) - (pljql) 

Dpci'2) s 2(pq;22) - (p2;q2) 

Ppq'3' m 2(pq:33) - (P3:q3) 

Dp,(W u 2(pq:i4}.) (pl4.:ql4.) 

Dp,(5) s i|.(pq;12) - (pl;q2) - (p2:ql) 

Dpq'̂ ' m i^(pq:13) - (pl:q3) - (p3:ql) 

Dpq''̂ ' m l4.(pq;ll4.) - (pl:qî .) - (plltql) 

Dpq'®' m I|.(pq:23) - (p2:q3) - (p3:q2) 

Dpq!" 8 l̂ .(pq:2lj.) m (p2;ql4.) - (Pl[-:q2) 

(3.19) 
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• i4-(p<lti|-3) - (pii.!q3) - {p3:ql|.) 

Dpq^^^^ « 2{pq;5^) - (p5:q5) 

« 2(pq:66) - {p6:q6) (3«19) 

• I|.(pq:56} - {p5:q6) - (p6:q5) 

Dpq(l^) « 2{pq:77) - (p7:q7) . 

The dji's are functions of the grotind state LCAO coeffi­

cients Cip, and have the following forms: 

<il s 2 
Oil + 021^ + 031^ 

^2 
s 
°12^ * °22^ + °32^ 

d3 m °23^ + 03^2 

u °2i^^ + °3i^^ 

«M» °11°12 021°22 ^ °31®32 

^6 
n °11°13 ^ ®21°23 ^ C31C33 
s ° 114.° 11 °3lj.®31 

^8 
s °12°13 ®22°23 °32®33 
«• 

°12°ll4. ^ °22®2i{. ^ °32°3i^. 

^10 °13°ll4. + C23C2I1. + °33°3i^ 

1̂1 
z 

*̂ 12 
Z 

1̂3 

^llj. 
= Cy.̂ 2 « X * 

The Dpq's corresponding to each matrix element as a 
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fimctlon of bond angle were computed from the electronic 

repulsion integrals over SO*s (see Table ll{.). These re­

mained the same throughout the complete SGP calculation. 

For a given set of oj^p's, the dj^'s were then computed and 

the sxammation (3.18) was carried out. 

(d) The SCF procedure. The solution of equations (3.11) 

reduces to the determination of the roots ^ ̂ of the 

determinant 

(P - G sl = 0 
(3,21) 

or Is + £ - §.1 ® 0 • 

Since the matrix elements are evaluated in terms of 

symmetry orbitals, it can be shown (1) that the determi­

nant (3*21) is considerably simplified. For the H2O prob­

lem, (3*21) was reduced to one four-by-four, one two-by-two 

and one one-by-one determinants. 

A reasonable set of coefficients c^p were chosen, G 

and hence F were calculated, and the five lowest roots of 

(3.21) were determined by the method of James and 

Ccolidge (3)* This method also yields the corresponding 

coefficients c^p, which are solutions of (3.11). The lat­

ter were compared with the assumed values, and generally 

found to be different. The process was then repeated until 

self-consistency was attained. 
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It was found that the fastest procedure is to utilize 

the computed Cj_p's as the assumed coefficients for the 

succeeding SCF trial. The solutions of (3.21) are auto­

matically orthogonal and are normalized. The divergencies 

arising from not using strictly orthonormal trial functions 

are probably relatively large. The mechanical construction 

of an orthonormal set is a tedious process. Therefore, 

considerable time was saved by continuously feeding the 

resulting coefficients back into the secular equations. 

1, General 

The W's utilized in the evaluation of all Integrals 

are those defined in equations (3»1) SLXid (3.2). Results 

are tabulated for Integrals Involving both nodeless and 

orthogonallzed ̂  All values are given in the 

Hartree atomic units (defined in footnote on page l|.), 

except, of course, overlap Integrals, which are dimension-

less, The various types of integrals involving are 

designated in the tables by the following symbols: 

overlap integrals. 

B, Evaluation of Integrals 

(3.22) 
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kinetic energy integrals, 

( X p T X , )  •  ( X p f "  ( - s A J ' j X q l '  d v M  J  ( 3 . 2 3 )  

nuclear-field attraction integrals, 

(A:XpXq)= IXp** (l/rf'A)XqP dvM ; (3.21^) 

and electronic repulsion Integrals, 

( Xp X,= Xr X3) = jXp'^XqM il/r)^^}Xr''ys 

The integrals are classified as one-, two-and tbree-conter 

Integrals depending upon the nuiaber of functional origins 

involved. Examples of each are, respectively, (hTh), 

(0:oh) and (h*h":h's), 

2. One- and two-center lntep;rals involving AO <3 

The values for all one-center integrals are listed in 

Table 8, In Table 9, the results are tabulated for all 

two-center integrals involving only the two hydrogen 

AO*s« The values for these integrals depend, of course, 

upon the H-O-H bond angle. In Table 10 are given all two-

center inte{:^als xirhich involve oxygen ̂ 's. These are 

evaluated using the convention that the positive z'-axls 

passes tlirough the primed hydrogen (see Figure 1, page ^7). 

All of the one- and two-center integrals either were 
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Table 8, On©-center Integrals over AO's 

Integp^al Value 
(a.u.) 

Ref. Integral Value 
(a.u.) 

Ref. 

S(OS') 0.233lj.5 a,b,c (oo:ss) 1.1331^ b 

(h'Th») 0.5000 a (ootzz) 1.1297 b 

(oTo) 29.6i|50 a,b (OS: OS) 0.0703 a,b 

(oTs) -8.0885 a (os:ss) -0,0181 a 

(sTs) 3.0869 b (os:z2) -0,0097 a 

(zTz) 2.5878 b (oz;oz) 0.0265 b 

(H';h«h') 1.0000 a (oz;sz) 0.03i}.9 a 

(0:oo) 7.7000 a,b (ss:ss) 0.8039 b 

(0;os) -1.0505 a (as:zz) 0.8137 b 

{0:ss) 1,2636 b (sz:sz) 0.1750 b 

(0;zz) 1.1375 b (zz:zz) 0.8905 b 

(h»h*:h*h*) 0,6250 a (zz:yy) 0,7911-5 b 

(oo;oo) [j..8l25 a,b izjizj) o.opo b 

(oo;os) -0.1414.98 a 

a. Calculated using analytical expressions given by 
C. C, J, Roothaan (88). 

b. Values obtained from tables given by J, P. Mulligan (66), 

c. Value checked with R, iS. Mulliken et al, (1^6). 
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Table 9. Two-center" integrals over ̂ 's involving only hydrogen AO's (a.u.) 

H-O-H bond angle (degrees) 
Integral 

90 100 105 110 120 180 
Ref. 

S(h'h") 0.1M03 0.39576 0.37i|.59 0.35531 0.32231). 0.214.061}. a,b 

(h'Th") 0.0^315 0.03777 0.0317I4. 0.02661 0.01867 0.00336 a 

(H':h"h") 0.3823 0.3553 0.31+38 0.3336 0.3165 0.2753 a 

(H':h'h") 0.27^2 0.2357 0.2190 0.20I1.3 0.1798 0.1237 a 

(h'h':h"h") 0.3621 0.3l}.07 0.3313 0.3228 0.3082 0.2715 a 

(h'h";h'h") 0.099I}.? 0.0770 0.0681̂ 9 0.061014. O.OI1.938 0.02621 c 

(h'h»;h«h") 0.2169 0.1880 0.1757 0.16i|.3 O.II1.6I 0.1025 d,e 

a. Calculated using analytical expressions given by C. C. J. Roothaan (88), 

b. Values checked with R. S. Mulliken e^ al. (1|.6). 

c. Interpolated from tables of J. 0. Hirschfelder and J, ¥. Linnett (89). 

d. Calculated frora independently derived expressions. 

e. Checked with tables of J. 0. Hirschfelder and J. ¥. Linnett (89). 
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Table 10. Two-center integrals over AO's 
involving oxygen AO's 

Integral Value 
(a.u.) 

Ref. Integral Value 
(a.u.) 

Ref. 

S(h'o) 0.06098 a,b (H':sz') 0a82[j. d 

S(h's') 0.^088 a,b,o (H'; z' 2') 0.6279 a,c 

S(la's) O.lj.914.6 d (H':y'y») 0.5014-3 a,c 

S(h'z') O.3I1.79 a,b,c (0:h'h«) 0.5108 a,c 

(h'To) 0,00[].5 a (H'toh') 0.0350 a 

(h«Ts») 0.1315 a {H«:s»h») 0.3859 a,c 

(h'Ts) O.I3I4-2 d (H':sh«) 0.3885 d 

(h'Tz«) 0.2375 a (H'tz'h') 0*kllk a,c 

(H';oo) O.552I1. a (0; oh') 0.2353 a 

(H':os») 0.1289 a (0:3»h») O,[!.365 a,c 

(H':os) -0.0005 d (0;sh') 0.392i4. d 

(H':oz«) 0.0165 a (0;z«h') 0.2501 a,c 

(H'rs's') 0.5̂ 1.55 a,c (h'h';oo) 0.5099 a 

(H';ss) o.5I}-5i d (h'h»:os') O.II8I1. a 

(H':3 » k') 0.1812 a,c (h'h':os) -0.00069 d 

a. Calculated using analytical expressions given by 
C. C. J. Roothaan (88). 

b. Value checked with R. S, Mulliken £t al, (Ii.6). 

c. Compared v/ith values obtained from M. Kotani et al, 
(90). 

d. Derived from auprooriate integrals involving nodeless 
2s AO's. 
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Table 10. (Continued) 

Integral Value 
(a.u.) 

Ref. Integral Value Hef. 
(a.u,) 

(h'h«:oz«) 0.0112 a (h' s ': h' s •) 0.17i|,8 8 

(h«h';s's») 0.I{.806 a,c (h's;h's) 0.1725 d 

(h'h':ss) 0.1̂ .792 d (h's':h'z') O.13I1.9 g 

(h'h':s'z') 0.107^ a,c (h's:h'z') 0.1339 d 

(h'h':sz') 0.1078 d (h'z';h'z') 0.1331 S 

(h'h':z'z') 0.5103 a,c (h'y';h«y') 0.0281;5 g 

(h'h«;y'y') 0.i|.658 a,c (h'h'th'o) 0.0318 h 

(h' oth'o) 0.00903 e (h'h';h's') 0,2861}. c,h 

(h'oih's') 0.0275 f (h'h':h's) 0.2789 d 

(h'o;h's) 0.0261 d (h'h';h'z') 0.2599 c,h 

(h'o:h'2') 0.0202 f (h'o:oo) 0.1917 h 

a. Calculated using analytical expressions given by 
C. C. J, Roothaan (88j. 

c. Compared with values obtained from M. Kotani et al. 
(90). 

d. Derived from appropriate integrals involving nodeless 
23 AO's. 

e. Calcxilated accuratel" to five decimal places by the 
method of Rudenberg (91). 

f. ApproximatedJ see pages 98-100. 

g. Interpolated (Lagrangian) from tables of M. Kotani 
et al. (90). 

h. Calculated from independently derived expressions. 
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Table 10. (Continued) 

Integral Value 
(a.u,) 

Ref. Integral Value Ref. 
(a.u,) 

(h'o;OS') 0.0333 h (h's« ;z'2' ) 0.3578 c, 1 

(h'o;os) -O.Ollij. d (h's 2'z') 0.3525 d 

(h'oroz') 0.0013 1 (h's ;s' s' ) 0.3530 c,h 

(h'oss's') 0.061|.9 h (h's ss) 0.3k2^ d 

(h'o;ss) 0.0632 d (h's ;s' 2' ) 0,01^613 c,i 

(h'o:s'2') 0.0025 • 
X (h's sz) 0. 0l].66 d 

(h«o:s2') 0.0022 d (h's : y » 7 '  ) c,i 

(h'o;2'z') O.O6I4.3 1 (h's y ' y ' )  0.3lj.00 d 

(h'o;y»y») 0.0635 1 (h' 2 ;oo) 0.21̂ 98 h 

(li's • ;oo) o.W h (h' 2 :os') 0.0578 h 

(h's;oo) 0.1+005 d (h' 2 :os) -0.0005 d 

(h's'SOS «) 0*1025 h (h' 2 ;oz») O.OI5I1. 1 

(h<s;os) 0.0038 d (h' 2 :s's' ) 0.2207 c,h 

(h's•:o2') 0,0065 1 (h' 2 :ss) 0.2073 d 

(h's:oz«) 0.0062 d (h' z : s' 2' ) 0.09I|.9 C,1 

c. Compared with values obtained from M. Kotani et al. 
(90). 

d. Derived from appropriate Integrals involving nodeless 
2s AO's. 

h. Calculated frora independently derived expressions. 

1. Calculated ixsing analytical expressions given by 
M. P. Barnett and C, A, Coulson (92). 
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Table 10, (Continued) 

Integral Value 
(a,u.) 

Ref. Integral Value 
(a.u.) 

Ref, 

(h'ztsz') 0.0939 d (h'y';s »y') 0.0661 c,i 

(h's'tz'z') 0.2361 c,i (h'y»:sy') 0,0651 d 

(h'a»:y'y') 0,2083 c,i (h'y':z'y«) O.OlOli. C,1 

(h'y'toy') 0.0119 h 

0, Compared with, values obtained from M. Kotani et al, 
(90). 

d. Derived from appropriate integrals involving nodeless 
2s AO's. 

h. Calculated from independently derived expressions. 

i. Calculated using analytical expressions given by 
M. P. Barnett and C. A. Coulson (92), 



www.manaraa.com

-76-

obtained from existing tables or were computed by standard 

methods indicated in the references, It will be noticed 

that in many cases, independent checks upon the values were 

obtained. 

Many of the one-center integrals were taken from 

tables published by Mulligan (66). It should be noted 

that Mulligan's published values are twice those quoted 

here, since his unit of energy was one-half of that utilized 

in these calculations. 

3. Exact methods for three-center Integrals involving AO's 

Relatively simple exact evaluation of tlaree-center 

integrals may be carried out in those special cases in which 

all M's involved have the same effective nuclear charge 

and the centers lie on a straight line. Such cases have 

been considered by Hirschfelder and co-workers (93f9l4.), 

whose work is based on that of Schuchowitzky (95) and 

Gordadse(96)« These types do not occur in the HgO 

calculations * 

Coulson (97) tias described a method for certain three-

center cases which has recently been utilized (98) as a 

general basis for two-center Integral calculations. The 

principle of the method is the infinite series expansion 

of an ̂  on one center in terms of products of spherical 

harmonics and bessel fimctions on a second center. 
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Many-center integrals are thus reduced to one- or two-

center integrals in this manner. This type of expansion 

was utilized in the present calculations for the evaluation 

of the three-center nuclear attraction integral {0:h'h"). 

The details of this computation are furnished in Appendix A, 

Other methods based upon the expansion of an ̂  on one 

center in terms of spherical harmonics on another center 

have been described by several workers, notably Coolidgje 

(18), Landshoff (99) and Lundqvist and Lowdin (100), Re­

cently, Rudenberg (101) has described a method which is 

quite similar in nature to the above treatments. It in­

volves the expansion of an ̂  in terms of a complete or­

thogonal set of ̂ 's on another center. This method was 

Investigated quite extensively during the course of these 

calculations. Two three-center Integrals were treated 

numerically, but the series involved were not carried to 

complete convergence. These two integrals may, therefore, 

be considered to be qxiite reliably approximated. Details 

of the method and calculation are given in Appendix B, 

Barker and Eyring (102) have recently reported a 

general formulation of the three-center nuclear attraction 

integral. The treatment has only been outlined specifi­

cally for s-type ̂ 's. The method is based upon the 

Neumann expansion of l/r in terms of the fixed elliptical 

coordinates of the attracting center and of the ordinary 
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elliptical coordinates of the electron. In this sense, it 

is probably closely related to Rudenberg's method (91) for 

two-center exchange integrals. The work was published 

after the SCF problem had been completed and, therefore, 

could not be utilized in this connection. 

ij-. Approximate methods for three-centar Integrals 

involving AO's 

There are 32 three-center integrals involved in the 

SGP energy calculations on HgO. It is well recognized that 

their neglect can lead to very serious errors (7l|.j75»78» 

103,1014,105). Therefore, in many theoretical calculations, 

it has been considered a wise policy to include all many-

center integrals even though rough approximations have had 

to be utilized. Exact computation of three-center inte­

grals is, indeed, a difficult task due to the fact that in 

most cases their solutions cannot be written in closed 

foiTtt, Until machine-computed tables are constructed in 

order to simplify the calculations, it will usually be 

necessary to rely upon approximate methods. 

It has been one of the primary aims of this treatment 

to secure the best possible approximate values for all 

three-center integrals without expending an unreasonable 

amount of time. For most MO treatments which have required 
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approximate values for integrals, the simple point-charge 

(66), the Mulliken (6,67) or the Sklar (106) approximations 

have been used in the past. 

All of the three-center integrals are functions of the 

H-O-H bond angle, which will be denoted by the symbol Y 

hereafter. In general, R without a subscript will refer 

to the observed 0-H distance. 

Table 11 lists the values for all of the three-center 

integrals. Inasmuch as each was treated as an individual 

problem, the approximations are discussed in the following 

paragraphs. 

(a) The semi-point-charge-approximation (SPCA) and 

(h'h";h'o)• Because of the large Z-value associated with 

the l£ oxygen AO, the charge distribution h'o is practi­

cally a point-charge. Replacing one continuous charge 

distribution contained in a tv;o-electron repulsion inte­

gral by a point-charge will be called an SPCA. The amount 

of charge represented by h'o is given by its overlap inte­

gral. Therefore, the SPCA for this integral may be 

written 

(h»h";h'o) =: S(h',o) (0:h'h") . (3.26) 

For Y equal to zero degrees, (h'h":h'o) equals (h'h';h'o), 

a tv/o-center integral, the exact value of xviiich is 
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Table 11, Three-center integrals involving AO's (a.u.)®-

H-O-H bond angle (degrees) 
Integral Paragraph" 

90 100 105 110 120 180 

(0;h»h"} (a) 0.251}.0 0.2310 0.2207 0.2113 0.191̂ -9 0. i56j[|. 

(h' h": s' s ') (a) 0.2389 0.2189 0.210l|. 0.2027 0.1897 0.1532 

(h'h":z'z') (a) 0.2IJ.19 0.2211 0.2125 0,20k9 0.1923 0.1577 

(h'h";h'o) (a) 0.0155 O.OII1.I 0.0135 0.0129 0.0119 0.0095 

(H":h»o) (b) 0.0337 0.033I{. 0.0333 0.0332 0.0330 0.0325 

(h"h":h'o) (c) 0.0315 0.0311+ 0.031i{- 0.0313 0.0313 0.0312 

(h»h";h's') i d )  0.1292 0.1175 0.1123 0.1075 0.0992 0.0796 

(H":h»s>) (e) 0,2i|i|. 0.236 0.231 0.226 0.219 0.196 

{H";h»s) (e) 0.2I|3 0.23ij. 0.229 0.22ij. 0.217 0.193 

(h"h":h's'} (f) 0.2237 0.2111.6 0.2116 0.2089 0.2014.5 0.1920 

{h"h":h's) (f) 0.2225 0.2132 0.2101 0.2073 0.2028 0.1910 

a. Inasmuch as all values given here are approximate, except for (0;h'h"), the 
number of figtires given are not necessarily "significant figures". 

b. Letters refer to paragraph headings in Chapter III, B, I4.. 
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Table 11, (Continued) 

Integral "'ara graph® 
90 

H-O-H bond angle (degrees) 

100 105 110 120 180 

{h»h";h'z) (g) 0.062̂  0.0517 0.011.67 0.011.22 0.0339 0 

(h'h":h'y) (g) 0.0625 0.0616 0.0609 0.0602 0.0587 0.05I4I}. 

(H":h'z') (h) 0.1701 0.1557 0.11}.9ij. 0.1I}.36 0.1335 0.1065 

(H'':h'y) (h) 0.0533 0.0620 0.0670 0.0705 0.0780 0,1065 

(H":h»z) (h) 0.1873 0.1683 0.1581 0.1]4.97 0.1319 0 

(h"h"th'z) (!) 0.1600 0.1l|.60 0.1i|.00 0.1320 0.1160 0 

(h"h":h'y) (i) 0.0550 0.0650 0.0700 0.071̂ 0 0.0810 0.1110 

(h"o:h'o) (J) 0.00895 O.OO89I4. 0.0089i{. 0,00893 0.00892 0.00887 

(h"o:h's') (k) 0.0266 0,0265 O.O26I4. 0.0263 0.0262 0.0257 

(h" o; h • s) (k) 0.0252 0.0251 0.0250 0.021I.9 O.O2J4.8 0.02ij.3 

(h"o:h' z') (1) 0.0155 0.0111.5 O.OII1.I 0.0136 0.0128 0.0101 

(h" o; h • y') (1) -0.0033 -0.0028 -0.0025 -0.0022 -0.0016 0 

(h" o: h' z) (1) 0.0133 0.0115 0.0106 0.0096 0.0078 0 

a. Letters refer to paragraph headings in Chapter III, B, l|.. 
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Table 11» (Continued) 

Integral Paragraph®' 
90 

H-O-H bond angle (degrees) 

100 105 110 120 180 

(h"o h'y) (1) 0.0086 0.0093 0.0097 0.0099 0.0103 0 .0101 

(h»s :h's') (m) o.i5i|.o 0.1520 0.1500 0.1i|.90 0.1I}.70 0 .1330 

(h"s h's) (ra) 0.1509 0.11}.89 0.1I1.68 O.iij.58 0.11^37 0 .1292 

(h"s :h' z) (n) 0.081̂ .9 0.0760 0.0716 0.0670 0.0579 0 

(h"s ih'y) (n) 0.0680 0.0729 0.0752 0.0773 0.0812 0 .0925 

(h"s h' z) (n) 0.08i|.l O.075L|. 0.0711 0,0666 0.0577 0 

(h"s li'y) (n) 0.0679 0.0727 0.0750 0.0771 0.0810 0 .0927 

(h"z h' z) (o) 0.07k 0.065 0.062 0.058 0.051 0 .010 

(h"y h'y)^ (o) -0.0337 -0.0393 -O.Ol^l -0.0[{48 -0.Qk.99 -0 .0660 

h'y)° (o) -0.005 -0.011 -O.Ollf. -0.016 -0.022 -0 

CO 0
 • 

a. Letters refer to paragraph headings in Chapter III, B, Ij.. 

b. Mulliken approximation. 

c. Modified Mulliken approximation; see paragraph (o). 
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Table 11, (Continued) 

H-O-H bond angle (degrees) 
Integral Paragraph^ — 

90 100 105 110 120 180 

( h"3r: h ' x )  ( p )  0 . 0 1 9 3  0 . 0 1 8 2  O.OI7S 0.0172 0.0162 0.0100 

( h " z : h ' y )  ( q )  0 . 0 3 2 3  0 . 0 3 1 5  0.030? 0.0298 0.0272 0 

( h « h " ; o z )  ( t )  0 . 0 0 3 0  0 . 0 0 2 5  0 . 0 0 2 2  0 . 0 0 2 0  0 . 0 0 1 5  0  

< h f h " ; s s )  ( u )  0 . 2 3 8 1  0 . 2 1 8 1  0 . 2 0 9 8  0 . 2 0 2 2  O.I89I4. 0.1530 

(b,'h":xx) (v) 0.2301 0.2107 0.2025 0.1952 0.1828 0.1502 

(lx*h":yy) (v) 0.239 0.219 0.211 0.20L|. 0.192 O.158 

( h » h " ; z z )  ( v )  0 . 2 l j . l  0 . 2 2 1  0 . 2 1 1  0 . 2 0 3  0 , 1 9 0  0 . l 5 0  

a. Letters refer to paragraph. Ixeadings in Chapter III, B, I|.. 
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0.0318 atomic units. The SPCA gave the value 0.0312. One 

expects the SPCA to be low here since there is an excess of 

interpenetration of h'h' and oh* which is not accounted for 

by the approximation. 

In general, an SPCA of the repulsion betv^een two 

spherically s^nmnetric distributions will be high. If the 

distribution which is replaced by the point~charge is po­

larized towards the other distribution, the SPCA will be 

closer to or lower than the exact value. It is often pos­

sible to determine the sign of the error of an SPCA by 

judicious analysis. 

For T's equal to and approaching l80 degrees, one might 

expect this approximation to be very poor due to the rather 

extensive immersion of the oh' distribution in the cylin-

drically symmetric h'h" function. In this respect, it is 

Interesting to compare the values obtained from the exact 

computation of (0:h'h") and the rather reliable approxima­

tions of (h'h";s'a') and (h'h":z'z') (see Table 11, p. 80), 

It is seen that, although for large Y the distribiitions be­

come quite Intermixed, the SPCA still appears to be a 

rather reliable ©.pproximation. 

The resulting approximations of (h'h":h'o) according 

to (3.26) are given in Table 11, page 80. 

(t*) (H":h'o) and the charged sphere approximation. 

Recently, R. G. Parr (10?) has given a method for 
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estimatlng electronic repulsion integrals over LCAO MO's 

involving Slater 2pTT This treatment includes an 

approximation in which the electronic charge distributions 

are replaced by uniforaly charged spheres of finite size. 

This approxiiaation has been extended in the present calcu­

lations to enable the estiraation of a variety of integrals 

involving AO's, 

The h'o distribution was replaced by a uniforraly 

charged sphere of total charge Q equal to 3(h',o), The 

radius of the sphere was fixed by the equation 

(h'o:h»o) « 0.00903 , (3.2?) 

whereby equals 0.ij.9l|. atomic tmits. This charged sphere 

approximation was found by deriving the classical energy 

of repulsion between two superimposed uniformly charged 

spheres of equal diameter (see Appendix C), The fact that 

the h'o distribution is not actually spherically symmetric, 

but polarized towards h', was accounted for by placing the 

charged sphere at a distance R© from 0 towards H*. Rq was 

deter-ifuned by the approximation 

(H'rh'o} s 0.0350 - Q/{R - Rq) , (3.28) 

where R is the 0-H distance, Rq is found to be 0,068 atom­

ic units. 

For the general three-center integral (H";oh')» the 



www.manaraa.com

-86-

charged sphere approximation takes the form 

(H":oh') = Q/RiS Ri' > R i (3.29) 

where 

r^t r {r2 + rq2 ̂  2rro cos 2w)^" . (3.30) 

The results are given in Table 11, page 80, 

It should be noted that the point-charge approximation 

of (li";oh') should be reasonably valid, especially for 

large Y, For Y equal to 180 degrees, the result is Q,/R 

or 0,031}- atomic units. This is expected to be high since 

the real center of the oh* distribution is polarized away 

from H", In the charged sphere approximation, this was 

accounted for by displacement of the sphere from 0. A sim­

ilar displacement introduced into the point-charge model 

makes the methods identical in this special case. For more 

ccmplicated integrals, this degeneracy will not occur. 

In anticipation of more general charged sphere approxi­

mations, there is gathered in Appendix C a number of formu­

lae giving the energies of repulsion between such spheres 

for various specific cases, 

(c) The integral (h"h";h'o) and an inequality rule for 

hybrid integrals. This integral has the value 0.0318 atom­

ic units for Y equal to sero degrees. The SPCA gave the 

value 0.0312 atomic units for all Y. The true value of the 
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integral for Y equal to l80 degrees xirould be expected to be 

less than 0.0312, 

The charged sphere approximation was applied to this 

integral by replacing the h"h" distribution by a uniformly 

charged sphere of radius 

•R^ ̂  (1.2)/(hh:hh) 

= (1.2)/(0,625) (3.31) 

= 1.92 atomic units. 

This relation was derived using equation (C,$) in Appen­

dix C, The oh* distribution was replaced by a point-charge 

of magnitude s(o,h*) at a distance Rq of 0.068 atomic tinits 

from 0 along OH'. Then, using equation (0.6), 

(h"h":h'o) <5^ Q(3Rh^ - R»2)/(2Rj^3) , (3.32) 

wliere R' is the distance between the center of the h"h" 

sphere and the point-charge. At Y equal to zero degrees, 

this approximation gave 0.03I4-6 atomic units, and at I80 de­

grees, 0.03214. atomic units. It was then assumed that the 

per cent error in this approximation is the same for all Y. 

This assumption is probably quite valid, since the position 

of the charge moves only O.I36 atomic vinits in a sphere of 

radius 1.92 atomic units as Y goes from zero to I80 degrees. 

The value obtained for Y equal to zero degrees was O.O318 

atomic units (the exact value fixed by assuming a constant 
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8.8 per cent error) and 0.0298 for Y equal to l80 degrees. 

This charged sphere approximation of {h"h":h'o) was 

not carried out until after the SCF calculations uere com­

pleted, The value 0,0312 was utilized at 180 degrees, and 

a linear interpolation between zero and l80 degrees was 

taken to obtain the intermediate values listed in Table 11, 

page 80, 

One may novj develop a useful inequality bett-reen the 

values for (h"h":h'o) and (H";h'o), or, in general, for 

(ISalSat Xb^c) and {A:)(]3Xo)» where and are any 

two ̂ 's on two different centers. By integrating over the 

coordinates of the electron represented by Isg^ls^, it may 

be shown that 

(Isg^ls^* ̂  b ̂  c ̂ ^ b ̂  c ̂ 
(3.33) 

-^Pa'^E^AjlsalSaXbX c) + /iaSds^ls^X b Xc)] • 

The first integral on the right-hand side of this equation 

is generally more easil;/ approximated than the electronic 

repulsion Integral. It is not always obvious which is the 

larger. The signs of the second two integrals on the 

right-hand side of the equation may often be found by in­

spection and thus determine an inequality. For example, 

{H:h"h"oh') and S(h"h"oh') are always greater than zero 

since their integrands are positive in all space. 
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Therefore, (h"h.";h'o) is less than (H";h'o). This inequal­

ity might be expected to become less pronounced as Y in­

creases, This is seen to be true of the results given in 

Table 11, page 80, 

(d) The integral (h*h";h'3). The SPCA was utilized 

for approximating this integral. The resulting values for 

both the nodeless and orthogonalized 2£ AO's are given in 

Table 11, page 80, 

(e) The integral (H"th's), Tlie h's' distribution was 

replaced by a point-charge of magnitude S(h',s') at the 

point of maximum overlap along the 0-H' internuclear axis. 

For y equal to l80 degrees, this point-charge approximation 

may be written as follows: 

(H":h's«) Si S(h»s')/{R + 0,785) 
(3.3i^) 

= 0*196 atomic units* 

The charged sphere approximation was applied in the 

same manner as it was for (H":h'o). The result is 0,193 

atomic units for Y equal to 180 degrees. 
A rough graph was drawn connecting the exact value at 

zero degrees and the ass-umed value of 0,196 atomic units at 

l80 degrees. The results are given in Table 11, page OO, 

(f) The Integral (h"h";h'a). The SPCA of (h"h";h*s') 

for Y equal to l80 degrees was applied by placing a 
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point-charge of raagnitude S(h',s') at tlie maximxim in the 

overlap of h*s * along the 0-H' axis. The result is 0,192» 

The Mulliken approximation (6) of this integral may be 

formulated as follox^s: 

(h"h":h's') - S(h',s') [(b-'h':h"h") -t (h"h":s's')] , 
(3.35) 

This gives the value 0.2813 at Y equal to zero (the exact 

value is 0,28614.) and 0,192 at l80 dejyrees. The interme­

diate results as given by this approximation (slightly 

modified to give the correct result at zero degrees) are 

listed in Table 11, page 80. 

(g) The Integrals (h'h";h'y) and (h'h";h'z). These 

two integrals were computed by the SPCA. The results are 

given in Table 11, page 8l. 

The Mulliken approximation shows general agreement 

with the above method with regard to the general variation 

with Y, The difference between the two never exceeds 

0,01l|. atomic units, the Mulliken method being the lower 

at all except very small Y. 

(h) (H";h'z) and (n";h'y). These two Integrals are 

probably the most difficult to estimate accurately. It is 

believed that the charged sphere approximation is the most 

reliable of the approximations used for these cases. 
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The Integral {H";h'z') was initially considered. This 

can be related to the above integrals by the transforma­

tions indicated in equations (3«6). The distribution h'2' 

was replaced by a pair of tangent uniformly charged spheres 

of radii and R2, and charges < 0) and 

spectively. The following formulas vrere obtained by using 

equations in Appendix C: 

(h'z':h'z') if + R2) f ' 

(H':h'z') ^2/^% " ̂ 2^ + + ^1^* R2<R/2 ; 

(3»36) 
(0;h'z') Q2/R2 + Qi/Ri ; 

and 
S(h',z') + Q2 . 

For Y equal to i80 degrees, 

{H";h'2«) q2/(R R2) + ̂ l/(R - %) » Ri<R/2 . (3.37) 

The right-hand sides of these five equations contain four 

unknowns: Q^, ^1 ^2* takes R^ and R2 equal 

to the distances from 0 to the appropriate maxima of h'z' 

measured along the internuclear axis (0,306 and 0,785 atom­

ic units), one can use the fourth equation and one of the 

first three equations to determine Q-j^ and 0,2* Approxima­

tions can then be obtained for the other three integrals. 

Table 12 gives the results of these calculations. 

It is seen from the first t'rxree calculations that 
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la rather insensitive to the choice of equations 

used to determine the parameters. The significance of 

IQiI + ̂ 2 ©specially interesting. This corresponds to 

the integrated absolute overlap between h' and z'j the 

Table 12, Application of the charged sphere approximation 

Integral 
Calculated approximate values 

Exact 
value •, oil 

(h'z'rhtz') 0.1331 (0.1331) 

(H':h»z«) 0.l|.lll| 0.369 0,388 (0.i|.llli.) 

0.117 0.107 0.092 0 

(0:h'z») 0.2^01 0.323 (0.2^01) 0,1^ 

\QiI + Q2 0.5^1-0 O.6I42 1.30 

value should be in the vicinity of 0*>09, which is the 

overlap between ̂  and £2.* seen that the value of 

zero given to (H":h*zO yields an absurd value for 

10.3̂ 1 + 0.2* 

It was assumed that IqJ + Qg is equal to 0.509, a 

reasonable value for this quantity. Then, Q-j, ®Q.iials 

-0,0806 and 0,2 equals 0*il|28l}.. The second and third equa­

tions (3*36) were solved simultaneously for and Rg, 

giving 0,322 and 0.827 atomic units, respectively. These 
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values of the parameters should give good values for 

(H";h'z') for all V. The results are given in Table 11, 

page 81, 

The Integral (H":h'3'-) is equivalent to (H";h'z') for 

Y equal to i80 degrees, Prom the above approximation, it 

is, therefore, equal to 0,107 at this Y, The exact value 

of {H":h'y) at zero degrees is zero, A roughly linear 

curve was plotted between these extremes. 

The integral (H":h'z) is determined by utilizing the 

above approximations of (H":h'y) and (M":h*z') and applying 

the transformation equations given in (3.6), The final 

values for (H^th^z) and (H";h'y) are given in Table 11, 

page 81, 

(i) The integrals (h"h";h*z) and (h"h";h'y). The in­

equality condition which was described in connection with 

(h"h":h'o) may be applied to these two integrals. It can 

be sho\irn that the following relations are correct: 

(h"h";h'z) < (H":h'z) 

and (3.38) 

(h"h";h'y) > (H":h'y) , 

The charged sphere approximation iiras applied to 

(h"h":h'z*) for zero and i80 degrees, which are equivalent 

to (h"h":h'z) at zero degrees and (h"h";h'y) at i80 degrees. 
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respectlvely. The spheres used for h"h" and h< z' were the 

same as those used for (h"h":h'o) and (H":h'z')» respec­

tively, For Y equal to zero degrees, the charged sphere 

approximation gives the formula 

Ql/(R + Ri) + - 3R2̂  - 5{R - R2)̂ ]/(10Rĵ 3) 

= 0.2̂ 6, (3.39) 

and for 180 degrees, 

q2/(r + r2^ + " ̂ ^1^ - ̂ (r - r^)2]/(ior^^) 

- 0.111. (3.l|.0) 

The value 0.2^6 atomic units is in good agreement with the 

exact value, 0»2599, and 0.111 for Y equal to l80 degrees 

agrees well x^ith the inequality cited in equation (3»38). 

The final values for the Integrals (h"h":h'2) and 

(h"h";h'y) are listed in Table 11, page 8l. 

( J) The lntep;ral (h*o;h"o) and a modified Sklar 

approximation. A method was developed for the approxima­

tion of exchange integrals of the type (ISg^X^; in 

which ̂ (ISg^) is small andjia(X.|^) is large. The approxima­

tion is described here for the special case in v/hlch 

is an £^-type A0« 

Consider first the charge distribution Isj^ns-jj. It may 

be written in analytical form as follows; 
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Isaiisb « exp(-;iara - f̂ b̂ b) » (3.î -l) 

where % and % are normalization constants. The magnitude 

of the exponential part measured on the internuclear axis 

A-B may be expressed in simpler forms. Let the distance 

A~B be R and designate region I as that being to the left 

of A, region II as that being between A and B and region 

III to the right of B. Then, 

exp(-;i|,R) exp(-;i^r^ " ^ 

exp(-jaara - /^b^b^ = i exvi-p.^R) exp(-;i^r^ + ;a^r^) II 

exp(-^af^) exp(-p^rij - p^r^) III. 

(3.I}.2) 

It is quite obvious that if ̂ (ns^) is large andjiadSg^) is 

small, the exponential part x^ill be negligible except in 

regions II and III. In order to secure a single exponen­

tial wliich will be approximately applicable in either of 

these regions, the average of the exponents is taken to 

give 

exp(-^a^^a - ̂ ^b^) exp(-^a^.) exp(-^^r^) . (3.i^3) 

Therefore, 

Is^ns^j 2: exp{-;iaR)r|3""^ exp(-;ii^r|^} . (3.til}-) 
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The two-center charge distribution has thus been approxi­

mated by a one-center distribution* One could utilize 

equation O.lilj.) directly for approximating integrals. How­

ever, it was found advantageous to fix the amount of charge 

in the approximated version so as to be equal to the exact 

overlap S(lsg^,ns^), The approximation then takes the form 

Iŝ ns-̂  - S(lŝ ,nŝ )lŝ »nŝ «/S(ls|̂ ') t 

where ̂ (ISg^') = ^Cns^') = ^p. (ns^). The method now strong-

l^r resembles similar approximations used by Sklar (106), 

The mononuclear overlap integral may be fomrmlated simply 

as follows: 

Sds-jj',ns^') • (n + 1) I [{2n) 12] . (3.I|-6) 

Some numerical results of this approximation as ap­

plied to the integral (lSgls^:lsQ^lS|j), yL{ls^) = 1, are 

given in Table 13. In these cases, the charge distribu­

tions for electrons one and two were each approximated, 

yielding a mononuclear integral. Greater accuracy could 

probably be attained by approximating only one charge dis­

tribution in each integral, and computing the appropriate 

hybrid integral. It is seen from Table 13 that tho approx­

imation tends to give low results. If applied to a three-

center Integral (Isa^ns-btlsgnsij), the approximation is 
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independent of the angle A-B-C, Inasmuch as the distribu­

tions are replaced by one-center £-type functions. There­

fore, from the nature of the method, one might be inclined 

to consider the approximate result as a good mean value of 

Table 13. lisaraples of the Biodified 
Sklar approximation 

R 
(a,u,) 

(b.alS|3:halSb) 
R 

(a,u,) Approximate 
(a.u.) 

Exact 
(a,u,) 

2.69 2,61̂ . 0,011+9 0.0158̂  

2.69 3.02 0.0075 0.0077̂  

2.69 3.11-0 0,0037 0,0037^ 

3.69 2.1+8 0,0106 0,0106̂  

7.7 1.8103 0,00895 0.00903 

a. Prom tables given by Fischer (8l). 

the integral for all bond angles* It will, therefore, be 

generally assumed that the value is valid for a 90 degree 

bond angle. 

For (h'o;h.''o), a linear variation with respect to Y 

is assumed. The exact value at zero degrees, 0.00903 atom­

ic units, and the approximate result at 90 degrees. 
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0,00895 (Table 13)» are utilized to determine the variation. 

(k) The integral (h'o;h"s) and the modified Mulliken 

approximation. The Mulliken approximation (6) of the inte­

gral (h'o:h'o) gives the result 0.0060 atomic units, v/hich 

is 33»5 per cent too low. The same approximation applied 

to (h's'ih's') is 0.1565, which is low by 10.5 per cent. 

On the basis of intuition alone, it might be expected that 

the Mulliken aprroximation of (h'oth's') should be in error 

to some intermediate extent. Asstuning an average error, 

22.0 per cent, the Mulliken approximation of (h'o;h»s'), 

0.0213, is modified to give the value 0.0275. 

The modified Sklar approximation may be applied to 

this integral as follows: 

(h*o:h"s') « S(h»o)(lSo'l3o':ti's«}/S(lSo'lSo') , (3.1|7) 

where ̂ (Is^') = |ja(o) » 3»85. This gives the result 

0.0265, which is expected to be valid for a bond angle of 

90 degrees (vide supra). 

The SPCA was applied to this integral as follows: 

(h'o:h«s») a S(h',o) (0:h's') = 0.0266. (3.1^8) 

This value is expected to be low due to the strong inter-

penetration of h'o and h's' not accounted for by the 

(Cth's') Interaction. This same type of integral (with 

different values for R and the ̂ 's) has been coiaputed 
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exactly by Fischer (8l), The exact value Is given as 

0.0179, whereas the SPCA gives 0.0168, 

The values 0,0275 for ̂  equal to zero degrees, and 

0,0266 at 90 degrees were assumed in order to obtain the 

final results given in Table 11, page 8I. 

(1) The integrals (h"o;h'z) and (h"o;h'y). These two 

integrals were transformed to (h"o:h'z') and (h"o:h'y') 

using equations (3.6), The latter integrals are more 

easily approximated. 

The modified Sklar approximation gives the result 

0,01^2 atomic xmits for (h"o:h*z')» This value is expected 

to be a good approximation for Y equal to 90 degrees. 

The SPCA applied to (h"o:h'z') gives the value 0,0153. 

Fischer's (8I) exact values for this type of two-center 

Integral may be compared to the corresponding SPCA*3; 

0.0262 (0.0228), O.OI7I (0,01^3), 0.0123 (0.0100) and 

0.0250 (0.022I4.), the approximations being enclosed In 

parentheses. The values are expected to be low as compared 

to the exact for V equal to zero degrees. This approxima­

tion does not account for a strong interpenetration of the 

positive portion of h'% ' and h'o, which gives a greater 

repulsion than accounted for by S(h'o)(0:h'z'), 

The charged sphere approximation was applied to 

(h"o;h'z')» The h"o distribution was treated in the same 

manner as for (h"h":h'o), and h"z the same as for (H":h*z'), 
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Tlae results of this method are {;̂ iven in Table 11, page 8l, 

The value for Y equal to 90 degrees agrees well ivdth the 

approximations discussed above. 

The Mulliken approximation of (h'z':h'z') gives the 

value 0,0767, which is l\.2,3 per cent too low. For 

(h'o:h'o), the error is 33.5 per cent low. Assuming that 

this approximation is 37.9 per cent too low for (h'oth'z'), 

the value 0,0238 is obtained, which is in quite good agree­

ment with that obtained by the charged sphere approxima­

tion (0,0212), 

The integral {h"o:h'7') was approximated by the 

charged sphere method for Y equal to 90 degrees. The h"o 

distribution was replaced in the same manner as for 

{h"h";h'o) and (h"o:h'2;'). The h'y' charge distribution 

was approximated by two equal tangent spheres of opposite 

charge. The radii used were determined by utilizing the 

geometric mean of the two radii Involved in the h'z' 

charged spheres. This turned out to be 0,525 atomic units. 

The charge Q to be associated with each sphere was deter­

mined by the relation 

(h'y»;h'y') = 0.0285 = 7Q^/(5Ri) . 

(3.1̂ 9) 

If eqmls 0,525, Q is found to be 0,103. The total 

integrated overlap of h'y' would then be Sii, or 0,206, 
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which is probably a reasonable value for this quantity. 

The integral (h"o:h<y') is equal to zero by symmetry 

considerations for Y equal to zero and l80 degrees. For 

intermediate angles, the charged sphere results are given 

in Table 11, page 82. The slight maximum for Y equal to 

120 degrees might be qualitatively explained by the fact 

that a decrease in repulsion is expected as h"o moves into 

the negative lobe of h'y (as Y approaches l80 degrees), 

(m) The integral (h's;h"s), The Mulliken approxima­

tion of (h's'th's'} is 0.1^65 atomic units. The true value 

is 0,17li.8, It was assumed that the per cent error is a 

constant independent of Y. The resulting values are given 

in Table 11, page 82. 

The charged sphere approximation was applied to this 

integral for Y equal to 180 degrees. The h's* distribution 

was derived in the same manner as for (H":h's'). The radi­

us of the sphere, was found from the approximation 

(h's'rh's') « 0.17lj-8 , O.pO) 

where Q, equals S(h',s'). was thus determined to be 

1.78 atomic units. The distance from 0 to the center of 

the sphere, Rq, was calculated by the approximation 

(H':h's') = 0,3859 Q[3Rî  - (R - Ro)2]/(2R^) , (3.̂ 1) 
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in iTtiich it xi/as f'otind that Rq equals 0,829 atomic xmits» 

For Y equal to l80 de^Tees, (h's';h's*} is represented by 

txTO equivalent uniforraly charged spheres which intersect 

sxich that the distance between their centers is 2Rq. Equa­

tion (C,2) may be used to determine the repulsion. The 

result, 0,133> is in exact agreement with the adjusted 

Mulliken approximation given in Table 11, page 82, 

(n) The intep:rals (h"s;h'z) and (h"s;h'y). The 

Mulliken approximation of (h"s':h»z) is assumed to be 19.85 

per cent low for all Y". 

The same approximation is )+2,3 and 10.5 per cent low 

for (h'z'th'z') and (h's'th's'}, respectively. The modified 

Mulliken approximation would then indicate that (h"s':h'z') 

shoxild be approximately 26,1}. per cent too low. This might 

indicate that a geometric mean per cent error should be in­

vestigated in preference to the average per cent error 

originally recommended for the modified Mulliken approxima­

tion. This vjould give 20,2 per cent, which is in better 

agreement vrith the true error, 19#85 per cent. 

The Mulliken approximation of (h"s«;h'y) is used as 

such. By pictorlally analyzing the Interactions involved 

in this integral and {h"s;h'z) it may be shown that for a 

bond angle of 90 degrees, the value of the latter should 

exceed that of the former. This is because at this angle, 

h"3' is farther from the positive lobe of h'y than from 
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h*Zf and also penetrates the negative lobe of h*y more than 

that of h'z, 

(o) The integrals (h"2 th ' 2 )  and (h"y;h'j). The exact 

value of the first integral for Y equal to zero degrees is 

0,1331 atomic units. The Mulliken approximation at this 

angle was found to be Ij.2,3 per cent too low. At i80 de­

grees, this approximation gives a value of zero, which also 

is expected to be low. For this Y, the charged sphere ap­

proximation was applied as follows; 

(h«z:h"z) = -2C^3_2/(2Ro') + 12q^2/(5R^) 

- Q3̂ 2[8O(2RO)2R̂ 3 . 30{2Ro)3R̂ 2 (3.52) 

+ (2Ro)̂ ]/(80R̂ )̂ , 

The parameters used are those derived for (h"o:h'y'). Rq' 

is the distance from 0 to the center of any of the four 

spheres involved. The answer obtained was 0.0120 atomic 

\inits. Before this calculation had been performed, the 

value 0,0100 atomic units was derived by quite qualitative 

means. This was the value which was used. A linear varia­

tion of (h'2;h"z) with Y was assumed. 

The results of the Mulliken approximation of (h^^y:h'j) 

are given in Table 11, page 82. All of these values are 

probably too low, inasmuch as the true value for Y equal to 
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proximate result of zero. 

The charged sphere approximation may be rigorously 

applied to {h"y;h'y) for Y equal to 180 degrees. The fol­

lowing expression was derived using equations from 

Appendix C: 

(h»y;h"y) ̂  

(3 ̂ 3) 

The values for all parameters were obtained from approxima­

tion number 1 of Table 12, The result of equation (3.^3) 

was -0,0327 atomic units. 

If one adds 0.028^ to the value given by the Mulliken 

approximation for Y equal to i80 degrees, the adjusted re­

sult of -0.037^ atomic units is obtained, Triis agreement 

with the charged sphere approximation seems to Indicate 

that such an adjusted Mulliken approximation should be 

reasonable, 

(p) The integral (h'xth"x), Tlie true value of this 

Integral for Y equal to zero degrees is 0,0285. For Y 
equal to i80 degrees, the value 0,0100 from paragraph (o) 

is utilized. 
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(q) The Integral (h"z;h*y). The Mulllken approxima­

tion of this integral is used for all values of Y* 

(r) The integral (h'h";oo)« The SPCA for this inte­

gral is utilized for all angles; that is, 

(h'h":oo) «" {Oth'h"). (3*$l4-) 

For Y equal to zero, the error is about 0.2 per cent. 

(s) The intepyal (h'h";oa). The SPCA was assumed for 

the integral (h'h";os')» This led to the value of zero for 

(h'h";os) for all values of Y. T'n.e true value at zero de­

grees is -0,0007. 

(t) The integral {h'h";02). For Yequal to zero, the 

exact value is 0.0112, and at I80 degrees, the exact value 

is zero. A rough plot Xiras constructed to obtain the inter­

mediate values, 

(u) The integral (h'h";3s). The integral (h'h";s's') 

ms evaluated by the exact Rudenberg method (Appendix B) 

without carrying the series to coraplete convergence. 

(v) The integrals (h'h";xx), (h»h"?2z) and (h'h";3ry). 

The integral (h'h":z'z') was obtained to fair accuracy by 

the Rudenberg method (Appendix B). These resiilts, combined 

with the SPCA (see paragraph a) and some minor changes to 
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obtaln a logical order in the values at Y equal to l80 de­

grees, are given in Table 11, page 83. 

5» Evaluation of integrals involving symmetry orbitals 

The integrals involving sjmimetry orbitals are easily 

expressed in terms of integrals over ̂ 's by first utiliz­

ing the transformation given in (3*6) and then, if neces­

sary, the transformations of eqxiations (3»8). The result­

ing numerical values are tabulated for all bond angles in 

Tables 11̂  and 1̂ , 
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Table II4., Electronic repulsion integrals over 
symmetry orbitals (a.u.) 

H-O-H bond angle (degrees) 
Entegral 

90 100 105 110 120 180 

11:11 1.0267 0.9358 0.8980 0.8636 0.8082 0.6795 

11:12 0.0666 0.0611.6 0.0637 0,0629 0.0611). 0.0579 

11:13 0.̂ 373 0.511̂ 2 0.50I4.6 O.I1.958 0.l|.308 0.1}i447 

11;1U 0.3315 0.29lj.5 0.2769 0.25814. 0.2219 0 

11:22 0.7639 O.7I1.O9 0.7306 0.7212 0.70i}.8 0.6663 

11:23 -0.0007® 

11:21}. 0.0109 0.0097 0.0090 0.00814. 0.0071 0 

11:33 0.7173 0.6971!- 0.6890 0.6615 0.6686 0.6322 

ll:3lv 0.1038 0.0913 0.0851 0.079L|. O.O67I4- 0 

11:101- 0.7290 0.7052 0.6933 0.663i|- 0.6669 0.6160 

11:5̂  0.391}-1 O.LI.058 0.i|.097 0.1+129 O.I4.172 0.I4.220 

11:56 0.2572 0.277k 0.2811}. 0.2880 O.299I4. 0.3392 

11:66 0.7270 0.71C9 0.70U8 0.6996 0.6912 0.6683 

11:77 0.6959 0.6765 0.6683 0.6610 0.6i}.86 0.6160 

12:12 0.0180 0.0180 0.0180 0.0180 0.0180 0.0179 

12:13 0.0513 0.0512 0.0511 0.0510 0.0509 0.050I}. 

12: Ik 0.0276 0.021j.5 0.0229 0.0212 0.0179 0 

12:22 0.2711® 

12:23 -0.0162® 

a. Values are the same for all bond angles. 
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Table li^.. (Continued) 

H-O-H bond angle (degrees) 

90 100 105 110 120 180 

12:2k. 0.0013 ,0.0012 0.0011 0,0011 0.0009 0 

12:33 0.0893® 

12:3ij. 0.0022 0.0020 0.0019 0.0018 0.0016 0 

12;iil{. 0.090J}. 0.0903 0.0902 0.0902 0.0901 0.0898 

12:55 0.0228 O.O2I4.7 0.0256 0.026li. 0.0278 0.0311 

12:56 0.0229 0.02I4.8 0.0257 0.0261!. 0.0278 0.0303 

12:66 0.090i|. 0.0905 0.0905 0.0906 0.0907 0.0910 

12:77 0.0898® 

13:13 O.323I1 O.32II1. 0.3193 0.3183 0^3162 0.3017 

13:11}. 0.1788 0.1615 0.1526 O.lUli 0.12l{.7 0 

13:22 0.5663®̂  

13:23 0.005I1-® 

13;2i|. 0.0062 0.0056 0.0053 0.0050 O.OOij.3 0 

13:33 

13:31}. 0.0i|66 O.OliSli. 0.0l|.01 0.0378 0.0330 0 

0,14.897 O.li.881 O.j+STÎ  O.I4.866 O.Ii.852 0.i|.808 

13:55 0.1719 0.1818 0.1870 0.1918 0.2005 0.2199 

13:56 0.1626 0.1753 0.1812 0.1868 0.1970 0,2266 

13:66 0.i|.897 0.l{.912 0.14.920 0.1+927 0.i|.9Ii-l 0.i}.985 

13:77 0.i|.808® 

a. Values are the same for all bond angles. 
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Table II4., (Continued) 

H-O-H bond angle (degrees) 
Integral 

90 100 105 110 120 180 

ll}.:ll!. o.i5i|.8 0.1367 0.1292 0.1209 0.1056 0.0385 

Ik: 22 0.2I4.98 0.2271 0.2151 0.2026 0.1766 0 

111-! 23 -0.0005 • .0.0005 -O.OOOli -O.OOOli. -O.OOOli. 0 

llf;2ll. 0.0192 0.0188 0.0186 O.OI8I1. 0.0180 0.0168 

111.: 33 0.2073 0.1885 0.1785 0.1682 O.lij.66 0 

ll|.:3l4- 0.1120 0.I089 0.1072 0,1055 0.1023 0.0921 

ll|.;i4l{. 0.2326 0.2108 0.199I| 0.1877 0.1632 0 

0.151|.7 0,ll|.62 0.114118 0.1391 0,1260 0 

0.081}.6 0.0830 0.0812 0.0790 0.0725 0 

Hl-i 66 0.2116 0.1931 0.1832 0.1728 0.1510 0 

D+:77 0.2083 0.1893 0.1793 0.1689 O.lli.73 0 

22 s 22 li..8l25̂  

22:23 -0.14̂ .98̂ -

22:2ij. oa 

22:33 1.1331!-® 

22;3i|. ©a 

22:I|J4. 1.1297a 

22:55 0.2559 0.2789 0.2892 0. 2 9 3 6  0.3150 0.3535 

22:56 0.21̂ .98 O.27O6 0.2803 0.2891}. 0.3059 0.3533 

22:66 1.1297® 

a. Values are the same for all bond angles. 
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Table II4., (Continued) 

Integral 
H-O-H bond angle (degrees) 

90 100 105 110 120 180 

22:77 1.1297® 

23:23 0.0703̂  

23:214. 0^ 

23:33 -0.0181a 

23:3I|. 0̂  

23:l4i|. -0.0097̂  

23:55 -0.0007® 

23:56 -0.0005 -0.0006 -0.0006 -O.OOO6 -0.0006 -0.0007 

23:66 -0.0097̂  

23:77 -0.0097̂  

2)4.: 2i|. 0.026ij.® 

2î .;33 oa 

2ki3k Q.OSkS^ 

2li.;l4J4. oa 

2l|.:55 O.OQk.9 O.OQkl O.OOI4.6 O.OOliii O.OOI4.I 0 

2I|:56 0.0025 0.0025 0.002i|. 0.0023 0.0022 0 

2i|.:66 0® 

2lj.:77 0̂  

33:33 0.8039® 

33:3ij. oa 

a. Values are t;he same for all bond angles, 
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Table 111.. (Continued) 

H-O-H bond angle (degrees) 
xnijegrajL 

90 100 105 110 120 180 

33:iA 0.8136® 

33:55 0,214.12 0.2611 0.2695 0.2770 0.2898 0.3262 

33:56 0.2073 O.22I4.6 0.2326 0.2i|.02 0.2539 0.2932 

33:66 0.8136a 

33:77 0.8136a 

3i|-:3ij. 0.17l}.9a 

3l|.:l4i}. oa 

3l{-:55 0.0l}.88 O.Oi|.73 O.Olj.61 0.0?! 111! o,okok 0 

31!-; 56 0.02011. 0.0201 0.0197 0.0192 0.0177 0 

3ii-:66 oa 

31̂ :77 oa 

0.8905̂  

14:55 0.2l{.70 0.2632 0.2713 0.277i|. 0.2869 0.3156 

0.2118 0.2289 0.2366 0.2li40 0.2573 o,29ii.5 

0.791}.5® 

I}4:77 0.791}.5̂  

55:55 0.1593 0,1839 0.19̂  0*2063 0.2238 0.2695 

55:56 0.0805 0.0996 0.1092 0.1177 0.1331!- 0.1853 

55:66 0.2i|.90 0.2729 0.2828 0.2916 0.3072 0.3523 

55:77 0.2357 0.2551 0.2633 0.2706 0.2830 0.3156 

a. Values are the same for all bond angles. 
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Table II4.. (Continued) 

H-O-H bond angle (degrees) 
inuegrax 

90 100 105 110 120 180 

^6:^6 0,0858 0,1009 0,1083 0,11I}.7 0.1289 0,1711 

$6:66 0,2326 0.2526 0,2619 0.2708 0.2870 0.3339 

$6:77 0,2083 0,2256 0.2337 0,2[|.13 0,2551 0,291̂ .5 

66166 0.8905® 

66:77 0,79k$^ 

77:77 0,8905® 

57:5'7 0,0092 0.0103 0.0107 0.0113 0.0123 0.0185 

57:67 O.OlOij. 0.0123 0.0116 0.0120 0.0127 O.OIU.7 

67:67 0,0l}.80a 

0.1315 0,11^.22 O.II4.68 0.1511 0.l58i|. 0.1768 

1$:16 0,0911 0.09[!.8 0.0963 0.0982 0.1019 0.1053 

15:25 0,0002 0.0003 0.0003 0.0003 O.OOOlv 0.0005 

15:26 0,0079 0.0086 0,0089 0.0092 0.0097 0.0112 

15:35 0,0399 0,0l}.65 0,01̂ .87 0,0507 0,0538 0.0622 

15:36 0.0763 0.0826 0.0856 0.0883 0.093î - 0.1078 

15:14-5 0,0168 0.0111.9 0.0129 0.0121 0.0099 0 

15:I;6 0,0223 0.0219 0.0215 0.0209 0.0193 0 

16:16 0,0758 0.0789 O.O8O3 0.0827 O.O8I1.9 0.0951 

16:25 0.0057 0.0062 0.006i|. O.OO67 0.0072 0.0101 

16:26 0.0193 0.0197 0.0199 0.0201 0.0205 0.0217 

a. Values are the same for all bond angles. 
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Table llj., (Continued) 

H-O-H bond angle (degrees) 
xntjegrai 

90 100 105 110 120 180 

16:35 0.0268 0.0299 0.0312 0.0326 0,0350 O.OI4.I2 

16:36 0,1125 0,1160 0.1177 O.II9I4. 0,1227 0.1329 

16;ij.5 0.0208 0.0200 0,0198 0,01914- 0.0181 0 

16;i|.6 0.0139 0.0132 0,0128 0.0123 0,0111 0 

2̂ :25 0.0001 0,0001 0.0001 0.0001 0,0001 0.0002 

25:26 0.0013 O.OOlii. 0.0015 0.0015 0.0016 0.0018 

25:35 0.0009 0.0010 0.0011 0.0012 0.0013 0.0018 

25:36 0,0022 0,00214. 0,0025 0.0026 0.0027 0,0032 

25:l}.5 0.0010 0,0015 0.0017 0.0020 0.0023 0 

25:1̂ .6 0.0006 0.0006 0.0006 0,0006 0.0005 0 

26:26 0.02614.̂  

26:35 0,0062 0.0067 0,0069 0,0071 0,0075 0.0087 

26:36 0.03l}.9̂  

26:14.5 0,0025 0,0025 0,00214. 0,0023 0,0022 0 

26;l}.6 oa 

35:35 0.0216 0,0216 0.0236 0,0267 0.0288 0.014.33 

35:36 0,014.66 0.0505 0.0523 0,0514-0 0,0571 0,0659 

35:14-5 0.0106 0.0107 0.01014. 0.0102 0.0093 0 

35:il-6 0,0089 0.0087 0.0086 0.0083 0.0077 0 

36:36 0,17i|.9̂  

a. Values are tbe saine for all bond angles. 
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H-O-H bond angle (degrees) 
integrajL 

90 100 105 110 120 180 

36:l|.5 0.0201}. 0.0201 0.0197 0.0192 0.0177 0 

36:ii.6 oa 

0.0068 0.0067 0.0052 0.00I{.9 0.0036 0.0185 

0.0139 0.01I}4 O.OII1.6 O.OII4.7 0.011}.9 0.0347 

l}.6;!}.6 0.0l}.80a 

17:17 0.014.78 0.0i}.67 O.OI4.63 O.Oi}.57 0.0141.7 0.0385 

17:27 0.0168^ 

17:37 0.0921̂  

17:lj.7 O.OlOlj. 0.0091}. 0.0089 0.00814. 0.0073 0 

27:27 0.0265® 

27:37 0.03î 9̂  

27:1̂ 7 oa 

37:37 0.17̂ 0̂  

37:l|.7 oa 

i|.7:l|.7 o,okQo^ 

a. Values are the same for all bond angles. 
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Table l5. Bare nuclear field integrals over 
symmetry orbitals (a,u,) 

H-O-H bond angle (degrees) 
Integral 

90 100 105 110 120 180 

Ojll )  0.761̂ .8 0.7i|.l8 0.7315 0.7221 0.7057 0,6672 

0:12) 0.3328̂  

0:13) 0.5550® 

Qtlk) 0.2501 0.2273 0.2153 0.2028 0.1768 0 

0:22} 7.7000® 

0:23) -i*o5o5® 

0{2li.) 0® 

0:33) 1.2636a 

0:3l|.) 0® 

0:i}l4.) 1.1375® 

0:55) 0.2568 0.2798 0.2901 0.2995 0.3159 o.35l!l}. 

0:56) 0.2501 0.2709 0.2806 0.2897 0.3063 0.3537 

0:66) 1.1375® 

0:77) 1.1375® 

H: l l )  0.9663 0.9133 0.8910 0.8711 O.B381 0,7613 

H:12) 0.0î 86 O.Ol̂ Sii. 0.0[|.83 0.0IL82 0.0I4.8I 0.0I1.77 

H:13) 0,14̂ 65 0.i}402 0,ij.366 O.I1.33I O.I1.281 0.I|.112 

H:1i^) 0.3381 0.:;C60 0.2C39 0.2727 0.2337 0 

H:22) O.552I1-® 

a. Values are the same for all bond angles. 
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Table 1^, (Continued) 

H-O-H bond angle (degrees) 
Integral 

90 100 10  ̂ 110 120 180 

(H:23) -O.OOÔ a 

(H:2ii.) 0,0117 0.0106 0.0100 0.0095 O.OO83 0 

(H:33) 

(H:3l4.) 0.1290 0.1172 0.1110 O.lOlj.6 0.0912 0 

(HjIUi.) 0.5661 0.5553 0.5501 0.5lii|-9 0.5352 0.50I|3 

{H:55) 0.1|.160 0.ŷ 20 0.i|.529 0.I|.625 O.I4.78I4. 0.5ll|.0 

(Hj56) O.aaii. 0.2667 0.2782 0.2882 0.3071 0.3662 

(H:66) 0.5661 0.5768 0.5821 0.5872 0.5970 0.6279 

(H:77) 0.50I|.3̂  

a. Values are the same for all bond angles. 



www.manaraa.com

-117-

C, Results and Interpretations 

1, General considerations 

Utilizing the notation for MO's defined in equations 

(3.10), the ground state ̂  electronic configuration for 

HgO may be written in general as follows: 

H2O; Ia3_)^2a3_)^lb2)^3ai)^lb]_)^ , * ^3.55) 

The ̂ 's are given in their order of increasing energy, as 

determined by qualitative considerations indicated in 

Chapter II. 

The SCF calculations were carried out, therefore, 

under the assumption that three MO's of Aj^ symmetry and 

one each of and B2 symmetries are occupied in the 

ground state. There seem to be no arguments to the effect 

that this general assignment is not true. If, however, 

this configuration were not correct for the ground state, 

the final results would be meaningless to a large degree. 

One must have a good approximation of the ground state of 

a molecule before it is possible to determine an excited 

state of the same symmetry. It is expected, although by 

no means proven, that if one made the wrong choice of occu­

pied MO's, the calculated results would indicate unoccupied 
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orbitals lower in energy than the originalljr assumed 

occupied ones. 

The ground state LCAO '̂s, listed along v/ith the 

unoccupied orbitals in the matrix (3.10), may be rewrit­

ten in the follotfing more useful notation: 

(̂2â ) = + =22° • "23= * °2U' 

)^^(3a^) = + °32° ''' ^33® * °3]|^ (3.56) 

/(Ibg) = 

jî (lb̂ ) = X , 

where CJI and CT^ are defined as in equation (3.9). 
1 5 

It is Important nox^r to distinguish more carefully the 

txiTO treatments that were carried out. First of all, a com­

plete SCF treatment was performed which Included no assump­

tions beyond those contained in the LCAO MO*s defined as in 

(3.10) (except, of course, the three-center integral ap­

proximations). As vras noted in Part A of this chapter, the 

seven-by-seven secular equation (3*21) reduced to one four-

by-four, one two-by-two and one one-by-one equations on ac­

count of symmetry. In addition, a second calculation xms 

carried out in which the following LCAO coefficients were 
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assuraed to be identically equal to zero; °13» ^li).' 

°22 °32* secular equation va.s thereby simplified 

to one three-by-three, one two-by-two and two one-by-one 

determinants. Hereafter, this latter calculation v;ill be 

referred to as the approximate treatment. 

The TO /(la^) is not orthogonal to /z?(2a^) and 

in tliis approximate treatment. Since the methods of cal­

culation have been derived under the condition that all 

MO's are strictly orthogonal, the moraerical results of 

this treatment should be viewed with some discretion. 

Inasmuch as the degree of non-orthogonality is expected 

/to be small due to the small overlap between the oxygen 

and hydrogen 1^ the results should not be entirely 

meaningless. A direct comparison of the two treatments 

should be of interest in view of the fact that this as­

sumption of no Inner-shell-outer-shell mixing is, indeed, 

utilized quite extensively. 

The requirement of a minimuia amount of ls-23-2p mixing 

in order to maintain TO-orthogonality has been called 

forced hybridization by Mulliken (108), In the approximate 

treatment, the neglect of this type of hybridization could 

have been compensated for either by permitting the coeffi­

cient c^^ or the coefficients Cgg take on non­

zero values. In either case, the simplification of the 

secular equation secured in the approximate treatment 
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vrould be lost. Therefore, in the complete treatment, the 

full measure of inner-shell-outer-shell mixing xms intro­

duced; that is, all of the ground state LCAO coefficients 

in (3»56) were allox^red to assume non-zero values. This 

mixing which is introduced over and beyond the minimum re­

quirements expressed by forced hybridization might not be 

expected to lead to an extensive improvement of the wave 

function. Some gain must be secured, but it is more likely 

that higher energy M*s, such as ̂  hydrogen and 3£ oxygen 

functions, would be more valuable in this respect, 

2, The groimd-state MP's 

In Table 16 are listed the SCP LCAO coefficients for 

the ground state MO's (see equations 3,^6) as a function of 

the H-O-H bond angle. Also given are the coefficients for 

the x^hich are unoccupied in the ground state elec­

tronic configuration. The results are tabulated for both 

the approximate (A) and complete (C) treatments, 

A general perusal of the values, say of the 105 de­

gree treatment, gives an indication of the nature of the 

MO's, The orbital /(Sa^^), which was assumed in simple 

MO considerations to be a pxire ̂  oxygen here appears 

to be rather bonding, A measiire of negative charge has 

been concentrated between the positive nuclei, thus lead­

ing to a loxfering of the energy (109). The MO, 
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Table 16, LCAO SCF MO's for the ground state of HgO 

H-O-H bond angle (degrees) 
Coeffl- ^ 
cients 

A«^ C^ AC AC 

Occupied 
orbitals 

°11 
°11 
012 
°1 
c 

°2l' 
C21 
022 
023 
02i|. 

C31' 
031 
032 
033 
03ij. 

0̂ 5' 
0̂ 5 
0̂ 6 

orbltals 

%3 
°l44 

°66 

0 -0.0031 0 -0.0032 0 -0.0033 
0 -0.0037 0 -0.0038 0 -0.0039 
1 1.0002 1 1,0002 1 1,0002 
0 0.0161 0 0.0162 0 0,0163 
0 0.0026 0 0.0025 0 0,0021+ 

0,202 0.175 0,2073 0.179 0,207 0,1781 
O.2I4.3 0.210 O.2I1.5 0.211 0.2lj.3 0.2088 
0 -0.028 0 -0.029 0 -0,0286 

0.821 0.8i}.2 0.8188 0.81+2 0.821 0,81+50 
0.133 0.11+9 0.1257 0.139 0,120 0.1328 

0.502 0.397 0.1+52 0.311-8 0.1+38 0.331+1 
0.603 0.U77 o.531|. 0.1+11 0.511+ 0.3917 
0 -0.031 0 -0.027 0 -0,0258 

-0.618 -0.533 -0.569 -0.k8l -0.51+8 -0,k601 
0,67k 0.759 0.736 0.810 0.757 0.8277 

0.737 0.781 0.738 0.780 0.736 0.7759 
0.550 0.582 O.57I1. 0.606 0.582 0.6136 
0.618 

!d 

0.585 0.587 0.551+ 0.575 0.51+28 0.618 

!d 

1.011 1.01+8 1.061 
1.215 1.238 1.2̂  
-0.082 -0.085 -0.086 
-0.771]. -0.819 -0.833 
-0.7it.l -0.671 -O.GkZ 

1.300 1.2k7 1.230 
0.969 0.969 0,973 
-0.967 -1.000 -1.013 

a. Approximate treatment. 

b. Complete treatment. 
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Table 16. (Continued) 

H-O-H bond angle (degrees) 
Coeffl-
oients 110 ^ 120 180 

0° AC AC 

Occupied 
orbltals 

°11 
®11 
®12 
°13 
°1!4. 

®21 
°21 
®22 
023 
02i{. 

°31 

pz 
033 
c 

t 

'3h 

0 
0 
1 
0 
0 

0,201}. 
0.237 

0 
0.825 
0.115 

0.i|.26 
0.I}.96 

0 
-0.528 
0*777 

0.714.0 
0.591}-
0.560 

Unoccupied 
orbitals 

°ll.l' 

%2 
%3 
°iUi. 

°65* 

°66 

.0.0033 

.0.0038 
1.0002 
0.0163 
0.0023 

0.175 
0.20k 

-0.028 
0.81^9 
0.127 

0.322 
0.375 
.0.025 
-O.I1I4.O 
0.^3 

0.777 
0.621}. 
0.529 

1.072 
1.2k8 
.0.087 
•0.81|1| 
-0.612 

1.213 
O.97E 
•1.028 

0 
0 
1 
0 
0 

0.201}. 
0.235 
0 

0.829 
0.103 

0.386 
0.)[)])} 

0 
•0.k77 
0,823 

0.714.8 
0,616 
0.531 

.0.0035 
.O.OOI4.O 
1.0002 
0.0165 
0.0021 

0,17l}.0 
0.2001 
-0.0283 
0.8^2 
0.1129 

0.2835 
0.3260 
-0.0220 
.0.3881}, 
0.8802 

0.7821 
0.6)4.38 
O.50II4. 

1.093 
1.257 

-0,089 
-0.870 
-o,5lj-i 

1.185 
0.975 
-1.055 

0 
0 
1 
0 
0 

-0.0038 
-0.00[).2 
1.0002 
0.0169 

0 

0,221}. 0.1785 
0.250 0.1988 

0 -0,0289 
0.821}. 0,8632 

0 0 

0 
0 
0 
0 
1 

0 
0 
0 
0 
1 

0.781 0,7863 
0.681 0.6852 
O.l}!}!}. 0.l}.378 

l.ll}.5 
1.257 
-0.093 
•0.955 

0 

i . W  
1.0000 
•1.130 

a. Approximate treatment. 

b. Complete treatment. 
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although still having bonding characteristics, novj contains 

a negative oxygen hybrid (110). The coefficient of 2s must 

be negative in order to make this KO orthogonal to » 

This adds electronic density to the negative lobe of 2pz 

and subtracts frora the positive lobe. Consequently, there 

is a smaller concentration of charge hetvieen the nuclei 

tiian if no ̂  were present in This is relevant to 

Mulliken's conclusion (108) that forced hybridization leads 

to weakening of/bonding ̂ 's. Here, the comparison is 

being made between the most simple M foiroulation in v;hich 

no 23-2p mixing is allowed in f^{3sLj) and the present ap­

proximate treatment, A calculation carried out on the 

fomer model x-jould undoubtedly indicate that is a 

strongly bonding orbital. Forced hybridization xirith re­

spect to the assumed inner 2s shell would lessen this bond­

ing poller. Further 23-2p mixing equivalent to the approxi­

mate treatment probably lessens the bonding in ̂ (3a]_) but 

strengthens the bonding in fSi2a.ĵ } {see page 33). 

As was indicated qualitatively in Chapter II, /(Ibg) 

is probably the most strongly bonding valence shell ̂  

for the H-O-H bond angle of 105 degrees. This is postu­

lated because of the weakened /z^(3a^) bonding due to forced 

hybridization and because of the more pronounced overlap 

which can be attained in f^ilh2) at large bond angles. 

In regard to the variation of the I^'s with respect to 
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bond angle, the following qualitative statements may be 

made (39): at a bond angle of zero dep;rees, /(Ib^^) becomes 

a pure 2pTr {j) ̂  on oxygen (with the real possibility of 

bonding with a helium AO, which is the united atom 

function corresponding to » and probably is quite 

bonding! at l80 degrees, /(lb2) takes on the greatest re­

sponsibility for bonding, while becomes a pure 2pTr 

(£) ̂  on oxygen. 

It is interesting to note that for the bond angle of 

10^ degrees the ratio of the LCAO coefficients in /(Ibg) 

is opposite to that which is to be expected on the basis 

of the relative electroaffinity of oxygen and hydrogen 

(see page 27). One might expect that such a basis for 

predicting LCAO MO coefficients would only be justified 

if there were one valence orbital. In the case of H2O, 

the orbitals tend to correlate themselves in a manner which 

is governed only by the relative electroaffinity in a gross 

sense. The 2s-2p2 hybridization allows considerable charge 

transfer in fS{3Sii), while the electrons in /(Ibg) tend to 

avoid the latter as well as going into the O-H bonding 

regions. 

It is seen that the differences between the approxi­

mate and complete treatments are, indeed, considerable and 

quite significant in some cases. The difference betx^een 

the coefficients of 0"^ in /!?(3a-j_), the most extreme case. 
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is 26 per cent, while the average variation of all coeffi­

cients in the 10^ degree calculation is about 11 per cent, 

3. Total energy and sources of error 

The total ground state SCF electronic energies are 

given in Table 1? as a function of bond angle for both the 

approximate and complete treatments. Also listed are the 

nuclear repulsion, total molecular and dissociation ener­

gies, The latter are obtained by subtracting the theoreti­

cally calculated total energy of the separated atoms from 

the total SCF molecular energies. The electronic energy 

of the oxygen atom, -20^,8 electron volts, x-rns computed 

using the same orthogonalized Slater ̂ *s as wei'e used for 

the MO calculations. 

Also listed in Table 1? are the corresponding experi­

mental energies for HgO. 

It is seen that these calculations indicate that the 

minimum molecular energy occurs at a bond angle somet^hat 

greater than 120 degrees. This quite divergent result 

should probably not be considered as serious as it might 

first appear. The total electronic energy is the quantity 

which is actually minimized by the SCF procedure. It is 

found to differ from the observed value by only about 

0.7^ per cent, although the absolute difference is quite 

considerable. As the bond angle decreases from l80 to 
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Table 17. Total SCF energies for the ground st^te of HgO 

H-O-H 
bond 
angle 
(deg*) 

Type 
of 

treatment 

Total 
electronic 
energy 
(e.v.) 

Nuclear 
repulsion 
energv 
(e.v*) 

Total 
molecular 
energy 
(e.v,) 

Dlssoc. 
energy 
(e.v.) 

90 
A®- -2315.0 

-2313.0 

251.06 

251.06 

-2063.9 

-2061.9 

9.1 

7.1 

100 
A 

C 

-231i|..i| 

-2312.6 

250.25 

250,25 

-206ij..l 

-2062.3 

9.3 

7.5 

105 
A -23II1..2 2l}.9.91 -2O6I4..2 9.1̂  

105 
C -2312. 21J.9.91 -2062.53 7.7 

10̂  Exp. -2329.8 214.9.91 -2079.9̂  9.1̂ 9̂  

110 
A 

C 

-2311!-* 0 

-2312*1| 

2!̂ 9.61 

2I1.9.6I 

-206l|..l}. 

-2062.8 

9.6 

8.0 

120 
A 

C 

-2313.7 

-2312.1ĵ  

21̂ .9.11 

2i|.9.11 

-206[!.. 6 

-2063.O3 

9.8 

8.2 

180 
A 

C 

-2310.6 

-2309.9 

2I1.7.95 

21̂ .7.95 

-2062.6 

-2062.0 

7.8 

7.2 

a, A = approximate treatment, C = complete treatment. 

b, Sxperlmental dissociation energy from (22, p, )4.8l); 
observed total atomic energies from (111), 
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90 degrees, the electronic energy decreases by only about 

0,13 per cent. The variable part of this large quantity 

is thus very small. 

Moffitt (5»112) has recently discussed to some length 

the inadequacies of the present orbital theories xfith re­

gard to energy calculations. His arguments are quite rele­

vant to the results of this calculation. It seems quite 

evident tliat if one is interested in determining the equi­

librium bond angle, the proper procedure would be to maxi­

mize the dissociation energy, a quantity which exhibits a 

relatively pronounced variation t^rith bond angle. It ap­

pears rather strange to attempt an accurate calculation of 

the difference bett^reen ttw large quantities x-rhich are in 

themselves almost twice as inaccurate as that difference. 

There are several other possible causes for the diver­

gence of the calculated equilibrium bond angle from the ob­

served value. Most of these points are applicable in gen­

eral to the whole problem as being sources of error. They 

are considered here because of their special relation to 

the total energy problem. 

The possibility that CI (see page 9) may be of impor­

tance should be considered. This question is discussed in 

detail in a following section. It is found tentatively 

that CI to a certain approximation is of negligible impor­

tance and is not able to account for the above discrepancy 
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between theory and experiment. 

Another possibility is that the LCAO approximation is 

poor x^ith respect to this total energy calculation. One 

might expect the best ;^'s to be quite different for small 

bond angles than for large. It has always been hoped in 

MO calculations that variation of the LCAO coefficients 

alone would sufficiently account for any required changes 

in the orbitals. The question of better Z-values for the 

AO's as well as the addition of higher energy orbitals is 

especially relevant in this respect. 

It must also be remembered that these calculations 

were carried out only for the experimental value of the 

0-H bond distance. There is some possibility that the 

computed total molecular energy minimum lies at some other 

bond angle, say less than 120 degrees, and some 0-H bond 

distance differing from 0,9580 angstroms. 

The approximate values used for many of the three-

center integrals may, of course, be held accoiintable for 

the large calculated equilibrium bond angle. The errors 

involved in these approximations are of a magnitude to be 

of real importance. For HgO, there are several large 

three-center integrals Involving either the 2pz or 2py 

AO's which vary quite considerably with bond angle, A 

partial test of the effect of these approximations on the 

total energy was carried out. This is treated in detail 
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in section 9. It was found that the possible errors con­

tained in the threo-center integrals may very well be re­

sponsible for the divergent results in the dissociation 

energy calculation. 

Finally, it should be noted that there was the ever-

present possibility of numerical error in as long and te­

dious a calculation as x^as atterapted here. Every precau­

tion was taken to reduce these possibilities to a ralnimum. 

Once the integrals were evaluated and checked several 

times, and the basic calculations set up, the nature of 

the SCF procedure raakes any further error a practical im­

possibility. 

h* The dipole moment 

Using the SCF MP's from the complete treatment given 

in Table 16, the dipole moment of H2O was calculated for 

all bond angles. The results are given in Table i8, and 

the details of the computation are f'urnlshed in Appendix D. 

The computed dipole mconent is one of the important 

criteria for jxidging the accuracy of a wave function. It 

is seen tliat the result for the observed H-O-H bond angle 

is in quite good agreement with the experimental value 

of 1.81|. D, 

The dipole moment was also computed using the MO's 
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from the approximate treatment. The result is 1,21 D, 

This value was obtained, hovrever, by assuming that all of 

the MO's are orthogonal. If this approximation is valid, 

it could be stated that the improvement of the wave 

Table l8. The calculated dipole moment 
of the ground state of H2O 

H-O-H bond angle Dipole moment 
(degrees) (Debye units) 

90 1.53̂  
100 1.55 
105 1.52 
110 I.ii.5 
120 1.32 
180 0 

a. All values directed in the sense 

function on going from the approximate to the complete 

treatment is quite astonishing. 

5. Ionization energies 

An SCF orbital ener;:y should represent a good approxi­

mation to the negative of the corresponding experimental I 

(1,6). In Table 19, the orbital energies are listed for 

both the approximate and complete treatments for all bond 

angles. Also given are the observed ]['s as well as the SCF 
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Table 19. LCAO SCF orbital energies for the ground state of H2O (e.v.) 

H-O-H bond angle (degrees) 

m 
90 

A^ 
100 

A G 
105 

A C 

Observed 

eda^) -560.06 --5̂ 8.09 -559.37 -557.52 -559.12 -557.27 

C(2ai) -38.19 -36.86 -37.65 -36.I1.O -37.U -36.19 

Cdbg) -18.7 -17.8 -18.9 -18.3 -19.2 -18.55 -I6.2l0.3°»'̂  

€(3ai) -15.̂  -11+.2 -111-.6 -13.6 -II1..2 -13.20 -lil..5l0.3°»® 

€(lbi) -13.̂  -12.2 -13.0 -11.9 -12.8 -11.79 -12.610.1°*̂ * 

€{li.ai) 12.1 13.6 13.7 

€(2b2) 16.1 15.9 15.9 

a. Approxiiaate treatment, 

b. Complete treatment. 

c. Negatives of ionization potentials obtained by electron impact (li-S)* 

d. Spectroscopic value: 16.0 i 0.̂  e.v, 

e. No spectroscopic value recorded. 

f. Spectroscopic value; 12.^6 1 0.01 e.v. (^0). 
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Tab le 19. (C ont Ime d) 

H-O-H bond angle (degrees) 

MO 
110 120 180 

A c A c 

eda^) -^58.96 -5^7.17 -558.58 -556.83 -556.08 -55i|-.8o 

€(2ai) -37.30 -36.07 -36.92 -35.75 -3ii..79 -3i;.ll 

e(lb2) -19.5 -18.9 -19.9 -19.i|-8 -21.0 -20.78 

e(3ai) -U+.O -13.0 -13.Ij- -12.60 -11.3 -10.80 

€(lbi) -12.8 -11.8 -12.5 -II.6I1. -11.3 -10.80 

G(î ai) ll|..0 li4..5 li|.«lv 

€(Sbg) 1^.7 15.3 15.8 

a. Approximate treatment. 

b. Complete treatment. 
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orbital energies for the unoccupied MO's, 
•" mmmum 

There is little doubt that the first observed value 

corresponds to removal of a non-bonding 2px electron. The 

calculated value is too low because the correlation energy 

for the resulting '3-2^^ calculated using ground state 

orbitals, is less than that for the ground state Itself, 

In other words, there Is an excessive amoimt of electronic 

repulsion encountered In (Spx)^ in the orbital picture of 

HgO due to the inability of the electrons to avoid each 

other. This is not encountered in the resulting HgO"̂  ion. 

Quantitative justification is given for this fact by the 

correlation energies for the resulting dissociation pro­

ducts, The calculated energy of 0"̂  %) is 

11,5 electron volts above the observed and of 

0 (13^2322p^, 3p) is l5«7 electron volts above the true 

energy. The appropriate valence state correlation energies 

are comparable to these. 

It is somex-^hat distiirbing that upon molecule forma­

tion, the valence state _I of the oxygen atom, 

0 {lŝ 2ŝ 2p̂ , V2) —>• O"*" (lŝ 2ŝ 2p̂ , calculated to be 

about 10 electron volts, is raised to the corresponding 

molecular ionization potential of 11,8 electron volts. 

This is directly opposed in direction to that which is 

observed: 111-,7 to 12,6 electron volts. The latter lias 

generally been attributed to charge transfer effects, a 
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phenomenon which also certainly takes place in the theo­

retical results, but apparently does not manifest itself 

in this manner. The difficult;/ can be explained in terms 

of correlation energies, a factor which certainly reminds 

one of the strong objections voiced by Moffitt concerning 

the energy calculations of present orbital theories (5»112), 

The calculated energy of H20"*', using H2O SGF ground state 

is very poor relative to that of 0"'', using oxygen 

atom Slater whereas the correlation energies for HgO 

and 0 are comparable in magnitude. 

It has been noted by Mulliken (59) that /i^db^^) may be 

weakly bonding, as attested b;/ the large fT-TT overlap; 

S(2pTTĵ , JSptTQ) equals 0.19. This is also indicated experi­

mentally in OH by the increase of internuclear distance by 

0,0^8 angstroms upon removal of the TT-electron. 

There exists some question concerning the assignment 

of the higher ionization potentials (i|.8). These calcula­

tions favor the designations as listed in Table 19. The 

nuraerical agreement is not as satisfactory as one might 

like, although the order of assignment seems quite well 

determined. It is possible that the use of exact values of 

three-center integrals iwild bring about better agreer.ient 

T^ith the observed J['s, but it is doubtful that the order 

would be reversed. The discussion on pages 33-36 is espe­

cially pertinent in this regard. A significant difference 
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between the potentials for /(lb2) and exists even at 

90 degrees. It Is interesting to note that there is a tvjo 

electron-volt difference between the second and third _I's 

of HgS (I|.8}, in which the equilibrium bond angle is about 

92 degrees. 

As was also noted in Mulligan's treatment of COg (66), 

considerably higher _I'3 are calculated for the non-valence 

shells than those predicted by Mulliken. The value for 

/z^(2a^) is partially explained by the fact that Mulliken 

took this orbital to be non-bonding 32 electron volts), 

whereas the SCF function turns out to be quite bonding. 

The variance of the computed orbital energy of /^(la^) 

from the observed K-shell X-ray absorption limit for the 

oxygen atom (52l|. electron volts) is due to the choice of 

the Slater orbital; the calculated valence state ioniza­

tion potential 0(ls^2s22p^,V2)0"*" (ls2s^2p^,V2) using 

Slater orbitals, is 5^7•! electron volts. 

6, The effect of configuration interaction 

In ̂  calculations, the question of the Importance of 

CI often arises. For low excited states, interaction of 

this type is expected to be quite considerable since there 

are liable to be many states of the same s;7mmetry in the 

same energy range. For the ground state of a molecule. 
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however, CI should be of little importance. However, some 

calculations isrere carried out to teat this assumption. 

The first question to be considered concerns the 

choice of excited state wave functions to be utilized in 

the GI_ calculation. Roothaan (1) has discussed this in 

some detail in connection with the calculation of excita­

tion energies. It is assigned that the SCF ground state 

MP's may be used. For H20» )Z^(i4.a^) and ^(2b2) are suitable 

excited state MO's, their LCAO forms being determined com­

pletely by orthonormality conditions. 

If the assumption in the preceding paragraph is ac­

cepted, it can be shown that totally symmetric states which 

differ from the HgO ground state by only a one electron 

transition exhibit zero interaction with the ground state. 

If any other ̂ 's were used, CI would be of importance. 

Two of the lowest excited states which do interact 

with the ground state function in this approximation were 

considered individually. They v/ere 

^1 * (Ia^)^(2a^)^f3a^)^(lb2)^(i^a^)^ , 

? p p p p (3.^7) 
12 ' (2a^) (3a^) (Ibg) (2b2) . 

The results of the CI are given in Table 20. It is seen 

that § ̂ gives zero interaction with the ground state 5 Q, 
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and $ 2 shows a slight, but still negligible interaction. 

The coefficients were not nmaerically deterriined, since it 

is quite obvious that a and o must be almost \mity and 

b and d must be nearly zero. 

Table 20. Effect of 
configtiration interaction 

Wavefunction^ Total electronic 
energy 
(a.u.) 

$o -81̂ ..00l4. 

a 5 o +"  ̂i 1 -8I4..OOI1. 

c i o + ^^2 -8I1..OO5 

a. See equation (3«57). 

7. The equivalent orbitals 

As was discussed in Chapter II, J. A, Pople (53) uti­

lized the EO (equivalent orbital) method of Lennard-Jones 

(514- - 57) in a semi-empirical manner to study the elec­

tronic structure of H2O, Some modifications of the numeri­

cal treatment have recently been published by 

A. B. P. Duncan and J. A. Pople (5S)« 

The SOP MO's from the complete treatment were trans­

formed rigorously to the EO representation. The results. 
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together with the values given by Duncan and Pople, are 

given in Table 21. The orbitals denote bond EO's, 

the plus sign for the orbital directed to the negative 

sign for that directed to The lone-pair ̂ 's ̂il±) are 

directed to the backside of the oxygen atom. They are 

symmetric with respect to the xz-plane, one orbital direct­

ed above the plane of the molecule, the other below the 

plane. 

It is immediately interesting to compare the values 

given for the lone-pair at 10^ degrees with the anal­

ogous hybridized A£'s calculated by the magic formula. 

Such a comparison mirht be subject to some criticism, 

since the latter method is essentially based on VB theory. 

The analogy between the lone-pair functions, however, seems 

to be quite reasonable. It is seen that the results of the 

magic formula for these electrons lie intermediate between 

those of the present calculation and those by Duncan and 

Pople, 

On the basis of the SCF resxxlts, complete localization 

of bond ̂ 's seems to be unjustified. Also, the assumption 

that these orbitals are aligned vjith the bond axis appears 

to be a restriction which is not entirely substantiated by 

the SCF calculations nor the magic formula results. In 

fact, the ar^le between the SCF bond functions, as indi­

cated by the coefficients of 2pz and 2py, appears to 
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Table 21. The EC's for the ground state of HgO 

90 105 120 180 

SCF SCF Duncan-
Pople®-

Magic 
Formula" 

SCF SCF 

Mh±) h* 0.607 0.577 0.58 0 0.557 0.I}.82 

h" -0.17ij. -0.199 0 0 -0.225 -0.30I4. 

0 -0,028 -0.026 0 0 -0.021̂ . -0.020 

s -0.105 -0.006 0.06 0.29 0.082 0.610 

2 0.$3k 0.561 0.37 0.65 0.572 0 

J ±0.1j.li|. io.38i4. ±0.ii.9 ±0.71 ±0.355 ±0.310 

/(1±) O -0.009 -0.009 0 0 -0.009 0 

s 0.697 0.680 0.58 0.65 0.658 0 

z -0.120 -0.192 -0.i|.l -0.29 -0.258 -0.707 

X I0.707 ±0.707 ±0.71 ±0.71 ±0.707 ±0.707 

a. Adapted from results of Duncan and Pople (58). 

b. Derived from values given in equation (S.lp). 
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decrease as the bond angle Increases, Bond localization is 

exact for a bond angle of zero degrees, and poorest for 

180 degrees. For this reason, inspection of the variation 

of ̂  bond properties as a function of angle is probably 

questionable. 

The dipole moment arising from the lone-pairs is found 

to be 1,69 D as compared to the Duncan and Pople value of 

3*03 D. The total bond dipole is -5.77 D while the other 

workers' result was -6.82 D, The moment due to the hydro­

gen nuclei is $.60 D. 

8- The first singlet electronic excited state 

Utilizing the same ex'^ited SCF function for /(i|.a^} as 

was utilized in the CI calculation, it is possible to cal­

culate the excitation energy, as well as the corresponding 

oscillator strength, for the lowest predicted electronic 

transition. This involves the promotion of one electron 

frcan the ;!^(lb^) ̂  to the unoccupied /!^()!|a^) orbital: 

(la^)^(2aj^{lbp)^(3a-)^(lb^)^ , 1 1 2  1 1  1  

(lâ )̂ (2â )̂ (lb2)̂ (3â )̂ (lb̂ ) (Î -â ) , . 

There are three absorption peaks in the vacuum ultraviolet 

at I6O8, 16ij.8 and I718 angstroxns (113) which might be 
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attributed to this transition. It is interesting to note 

that the txfo energy separations between successive bands 

are both about 1^00 wave nvtrabers, vriiich nearly equals the 

fundamental frequency for the symmetrical bending 

vibration {29, p. 201). 

The calculated energy for the transition (3.58)» using 

SCF ground state MO's, is 96,200 wave numbers# The absorp­

tion would then occur at 10[}.0 angstroms. The result is not 

expected to be very accurate, since the approximation of 

is certainly of doubtfxil validity. 

Mulliken (1|.0) takes the excited fTO to be a pure 

oxygen 3^ AO, Since this higher energy ̂  was not used in 

the present LOAD set, it is quite likely that the computed 

orbital which has been used here is quite invalid. 

Oscillator strengths for the transition (3»58) were 

also computed. The dipole length method may be formulated 

as follows; 

2 
f =V(1.085 X 10^h[ [ (lb^)x{l}.a3^)dv] , (3.59) 

where the freqtiency of the transition,!/ , is in wave num­

bers and the integral is in centimeters. The resulting 

value is 3 X 10"^, The dipole velocity method. 

2 
f » (l.ii.6[{. X 10̂ ) [ 5 (lb]_) (d/dx) (l}.an )dv] /-W , 
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where V is in -wave numbers and the integral is in inverse 

atomic units, gives the result 0.037* In both calcula­

tions, the theoretically calculated value for V uti­

lized, If the experiraental frequency of transitional were 

used in (3-59) and (3»60), the results would be changed to 

1,89 X 10"^ and 0.0^9, respectively. The experimentally 

observed f number is 0.03 (113)* 

The dipole length method seemingly gives a very poor 

result. This may very xroll be attributed to the fact that 

no ̂  character has been included in the excited state 

function. The ̂  AO, with its r^-dependence and exponen­

tial part undoubtedly containing a low Z-value, would 

probably predominate at large distances. But it is at 

large distances where the dipole length method is most 

sensitive. The absence of ̂  character from would 

cause the resulting commuted f number to be low. 

These predictions were partially substantiated by 

some simple calculations based upon the assumption that 

the transition (3«58) is simply (2px) —> {3s). Slater AO's 

were utilized, the Slater Z-value for 3£ being 1»75* 

Using the experimental value for V, the dipole length 

method gave the more reasonable result of 0.016, while the 

dipole velocity value was 0.191. 

Integrals required for the dipole length method as 

given in equation (3«59) may be found in Appendix D. The 
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additional integral Involving the ^2. formulated 

as folloi^s: 

The integrals for the dipole velocity calculation are 

given by H. Shall (III4.), with the exception of the inte­

gral involving 3s, which is given as follows: 

j(3s) (d/dx) {2px)dv a 32(10) V2^2^/2^27/2(^)-1( ̂  ̂ 4 

9. Dependence of the results on approximate Integrals 

In addition to the SCF calculations originally car­

ried out and described in the preceding pages, a second 

complete treatment for the bond angle of 10^ degrees was 

performed. In this computation, the v^ues for two of the 

approximate tliree-center integrals were revised as 

follows; 

j{2px)x(3s)dv » 2 

— 0*2929 a,u» 
(3.61) 

(3 .62 )  
= 0.281^ a.u. 

(H";h'2); O.l^Sl-^ 0.1337 

(h"h":h'z): 0.llj-OO0.1028 , 
(3.63) 

where values are ij^iven in atomic units 
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Table 22. Results of complete SCP treatment 
using revised values of integrals 

First complete Revised complete 
calculation calculation 

LCAO coefficients 

G2i' 0.178 0.176 
Cpp -0,029 -0,028 
0%% 0.8I{.5 0.8ii.8 

0.133 0.130 

c.-,' 0.33lf 0,339 
c<i -0.026 -0.026 

-0.k60 -0.k60 
c||J 0.828 0.826 

Cpjcr 0.776 O.Slij. 
egg 0.5^ 0.^11 

Orbital energies®' 

e(lan) -557.3 -558.6 
6(2at) -36.2 -36.8 
6(3at) -13.2 -II4..O 
eClbp) -18.6 -19.1|. 
e(ibi) -11.8 -12.5 

Total energies® 

Electronic -2312.Ij. -2312,8 
Molecular -2062.5 -2062.9 
Dissociation 7.7 8.1 

a. Values given in electron volts. 
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These two were chosen since their probable error was con­

sidered to be relatively high. Also, it is quite possible 

that the minimum molecular enerrty is quite dependent upon 

these integrals as well as upon the analogous integrals 

containing 2py instead of 2pz« It should be noted that 

the above revisions vj-ere probably somewhat overemphasised# 

The complete results, with the exception of the LCAO 

coefficients for /i^da^) which were unchanged, are given 

in Table 22, It is significant that the have 

changed very little, but the orbital has changed quite 

considerably. The orbital energies also have undergone 

rather noticeable variations. The total molecular energy 

has been depressed to a value which is almost equal to the 

energy of the 120 degree configuration in the original 

calculation* It would be interesting to determine whether 

or not the energy minimum is actually shifted to smaller 

angles by the introduction of these revised integrals* 

The revised calculation thus emphasizes the need for 

exact values of three-center intefjrals if a real test of 

this theory is to be carried out. Up to the present, the 

usual emphasis has been merely to Include all integrals 

whether they are approximated or not. 
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IV. COHCETTSIOKS 

The major conolusions derived from the foregoing re­

search may be listed as follows: 

1. The most simple ITO and TO approximations present an 

inadequate understanding of the properties of HgO. 

2. The Principle of Maximum Overlap bj itself should be 

held only as a most qualitative idea, since molecule 

formation can be regarded as a competition between 

many factors of comparable importance, one of which 

is the procurement of large bond overlap, 

3. Individual study of the many three-center integrals 

involved in these calculations indicates that more 

reliable approximations than the usual ones are 

t^forthy of investigation. 

I4., The SCF MO's are in relatively good agreement with 

qualitative considerations of the electronic struc­

ture of HgO. 

The SCF MO method which neglects MO-orthogonality, 

even with respect to inner-shell 1^ electrons, gives 

results which are significantly different from those 

of the more complete treatment. 

6. The SCF MO energies are found to be in as good 
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agreement x-rlth experiment as can be expected. One 

must take into account the fact that the orbital and 

total energies were differences between quantities 

each of which has an error comparable to the dif­

ferences sought. 

7. In the approximation utilized, configuration inter­

action (W) was found to be unimportant with respect 

to the ground state wave function, 

8. Comparisons of the SCF MO*s with orbitals found by 

other methods was found to be quite encouraging. 

9. Calculations were performed to determine the nature 

of the first excited singlet state of H2O. The 

transition probability results were found to cor­

relate relatively x/ell with experiment. 

10, The effect of error in the three-center integrals 

on the SCF calciilations was found to be of 

significance. 
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V. SUMMARY 

The first part of the thesis included a brief general 

description of the two approximations, the molecular or­

bital (^) and valence bond (TO) methods, tjhich are gen­

erally utilized in treating problems of electronic struc­

ture, The historical application of these methods to the 

irater molecule was then reviewed and discussed in some de­

tail, The more recent qualifications of these early 

treatments were described and found to yield quite satis­

factory qualitative explanations for the electronic prop­

erties of HgO. 

Chapter III included the general formulation of the 

present SCF LCAO MO treatment of H2O, the evaluation and 
approximation of integrals involved in the calculations, 

and the presentation of the results and interpretations 

thereof. 

Chapter IV gave a brief list of the major conclusions 

derived from this work. 
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VIII. APPEIJDICES 

A, The Evaluation of (0;h'h") 

M. P. Barnett and C. A. Coulson (92) have given a 

general infinite series expansion of the function 

in tei^ms of r^^ and 0g^. The explicit foramlation includes 

products of ordinary Legendre polynomials and certain 

other functions which are derived from standard bessel 

functions of half integral order and purely imaginary 

argument. This series was substituted for and in 

the integral (0;h»h"), The resulting expansion, after 

integration over 6 and may be tn?itten as follows: 

where the function in the integral is defined in reference 

(92), Utilizing this definition, the expansion was formu­

lated in terras of Integrals of the following form: 

r̂ ^̂ l expi-^r-^) (A.l) 

(0:h'h") = R'^(2n t l)Pjj(cosY) r,^ R)^ dr , 

0 (A,2) 

(A.3) 
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Table 23, The series expansion of (0:h'h") 

H-O-H bond angle (degrees) 

n 0 90 100 105 110 120 180 

0 0.27715 0.27715 0.27715 0.27715 0.27715 0.27715 0.27715 

1 0.1611U 0 -0.02798 -o.oli.171 -0.05511 -0.08057 -0.16111; 

2 0.0^0^ -0.02527 -0.02298 -0.02019 -0.0l6i|.0 -0.00632 o.o5o5l|. 

3 0.01i}.65 0 0.00362 0.00505 0.00605 O.OOGkl -0.01ij.65 

k 0.00^72 0.00215 0.00152 0.00082- -0.00002 -0.00165 0.00572 

0.0011|.5 0 -O.OOOli.1 -0.00050 -O.OOOii.8 -0.00013 -o.ooii|.5 

Total 0.51065^ 0.25^03 0.23092 0.22063 0.21119 0.1911-89 0.15618 

a. By graphical extrapolation. 

b. Exact value: O.^lOSlj.. 
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R 

0 
CO 

Xn' = 5 K^^ir) P^dr (A,3) 

R 
oa 

Y ' = ( K ' r) K r 'y*) T»̂ dr . n ^ L.^,11 f- ^ • 

R 

It may be shown for both priitied and unprlraed func­

tions that 

Xjj « (2RL̂  + 

and (A *11.) 

Yn = [3nXn - 3(n + 4 2{n t DRL̂ ^̂ l/Can + 1) , 

R 
where Ln " ^ Ij^^(r)rdr. The latter Integral may be eval-

0 
uated from the bessel e-iuation (115). 

Analytical evaluations of the and Yj^ for small n 

were carried out to ten significant figures. Equations 

(A.Ij.) were then utilized to evaluate higher integrals. 

The bessel functions were evaluated explicitly for the 

desired parameters given by Barnett and Coulson. The 

numerical results of the series expansion are given in 

Table 23. 
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B. The Evaluation of (h'h";s's') and (h'h":z'z') 

These evaluations xijere based upon K. Rudenberg's ex­

pansion method for three- and four-center integrals (101), 

They are based upon the expansion of and in terms of 

a complete orthogonal set of ̂ 's on the oxygen atom, 

which may be formulated as follows: 

h = H Z) s[h,x(n.j)] x(nj) . (B.l) 
jsO n-j+-l 

The set of function x(nj) are constructed from ordinary 

Slater ̂ 's« These are automatically orthogonal for dif­

ferent values of J, but linear combinations must be taken 

bo form an orthogonalized sub-set with constant J. 

The overlap integrals over Slater ̂ 's were maximized 

with respect to parameter 2 contained in each. In this 

manner, it was hoped to secure maxiiiium rapidity of con­

vergence of the series. 

Equation (B.I) was substituted into the integrals, 

yielding a series involving the overlap and mononuclear 

repulsion lntef_p?als. These were then evaluated by stand­

ard methods to yield the results given in Table 2lj. for 

the H-O-H bond angle of zero degrees. For other bond 

angles, each term is multiplied by Pj(cosy) in the same 
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Table 2I4.. The evaluation of (h'h";s's') and (h'h": 2'2') 

(h'h'tz'z') (h'h'ts's') 

j n Subtotal Total Subtotal Total 

0 1 

2 

3 

1 2 

3 

k 

2 3 

k 

3 h 

6 

Total 

Exact 

0.26683 

-O.O23I1-3 

0,26070 

-0.02196 

0.02915 0.27255 0.02525 0.26399 

0.16532 0.15339 

•0.00211 0.00077 

.0.00362 0.15959 -0.00653 0.1I}.763 

0.05792 0.0I1.908 

o.00311 0.00087 

0.00017 0.06121 O.OOOHi. 0.05009 

0.01800 O.OII1.I8 

O.OOOii.1 0.00122 

•0.00191 0.01650 -0.00213 0.01327 

0.50981̂ . o,k7k̂ Q 

0.51029 O.I4.8O6I 
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manner as for {0;h'h"}. 

The Rudenberg method Is quite difficult to carry out 

because of the cimibersome orthogonalization requirements. 

Furthermore, the convergence of the series over n seems to 

be quite erratic. The Barnett-Coulson method (92) is prob­

ably better in this respect since the double series is re­

duced to a single series. 

C, The Charged Sphere Repulsion Formulas 

The following formulas were derived by standard inte­

grations of the classical repulsion betvxeen unifom charge 

distributions. The more complicated integrations were 

carried out in cylindrical coordinates. 

The first case is the most general, that of two 

intersecting uniformly charged spheres of different radii, 

R]_ and R2, the centers of which are at a distance RQ apart; 

E = QiQ2̂ 1̂ 0)-̂ R3̂ -3r2-3R̂ -1[̂ (R̂ 6 + R̂ )̂ - R̂  ̂

+ 30RORI^R2^^^1 + ̂ 2 "* 3^0^ ^ 80R23R^3 

- 1}.0RO3(r^3 ^ r^3) _ 21i.RO(R^^ + ^2^) 

+ +• 1^2^^ " + ^2^^ 

f 15Rô (R2̂  1̂̂ ^̂  * 
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Por the special case of equal radii, (C.l) may be 

iirritten 

E/(qiQ2> " 6/(%) 

- (160)"̂ R̂ "̂ [80 Rô Rî  - 30 + Rô ] • 

If Rx^R2» smaller sphere is contained en­

tirely within the large, the repulsion may be written 

S « Q;î Q2(10)-̂ R2"̂ [Î R22 - - R̂Q̂ ] . (C.3) 

If Rq is equal to zero 

E « 3QxQ2(10)'̂ R2*'̂ [5R2̂  - Rl̂ ] • (C.lj.) 

If the spheres iiave equal radii and are directly 

superposed, 

E = 6/(̂ 2̂  • 

The repulsion between a spherical distribution and a 

point charge within it is given by 

E = 2-1R]_-3(3Ê 2 _ 2̂) ̂ (c,(S) 

where R^ is the distance of the point from the center of 
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the sphere. 

If the point charge Is on the surface of the sphere, 

or outside of the sphere. 

If the point charge is at the center of the sphere, 

Finally, if two charged spheres do not overlap, their 

repulsion is given by equation (C.7). 

The dipole moment of H2O may be expanded by using 

suitable transformations so as to be expressed in terms 

of simple integrals over ;^*s. The general formulas for 

these Integrals, together with their numerical values for 

the parameters used in HgO are given as follows: 

E = 1/Ro . (0.7) 

E « 3/(2%) , (C.8) 

D. The Dipole Moment Integrals 

(for equal ji-values) 
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z 2s^»dv = 

-A^Bg t = 0.1270 

jlsa £ Spz^j'dv = "" ^1^3 

- A^B2 + AgB^) = -0.281^.7 

JlSg I 2p7b'd^ • 32-Va2^%^/^R®K(Bo - B^) 

t - BQ) t ̂ 0(62 - B̂ )] s 0.3561 . 

The 2-dlrection is taken along the raolecular axis. 

The origin of z and ̂  is taken to be at the mid-point be­

tween a and b, the positive direction of £ being towards b» 

The positive lobe of 2pz^ is directed towards a. The 

argiiraent of Aj^ is "JR( that of Bj^ is -Jr( - p.-^), 

Tables and recusion formulas are given by Kotani (90). 
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